scholarly journals Improved Bi-Criterion flexible registration for fixtureless inspection of compliant parts

2020 ◽  
Vol 65 ◽  
pp. 116-129
Author(s):  
Kaveh Babanezhad ◽  
Ali Aidibe ◽  
Gilles Foucault ◽  
Antoine Tahan ◽  
Jean Bigeon
Keyword(s):  
1999 ◽  
Vol 122 (4) ◽  
pp. 766-772 ◽  
Author(s):  
Daniel F. Walczyk ◽  
Randy S. Longtin

Commercially-available reconfigurable fixtures, used for holding compliant sheet metal, composite and plastic parts during secondary machining operations, are extremely expensive and overly-complicated devices. A computer-controlled, reconfigurable fixturing device (RFD) concept for compliant parts, based on a matrix of individually-stoppable pins lowered by a single rigid platen, has been developed as a simple and low-cost design alternative to commercially-available devices. Two different approaches to stopping and clamping individual pins have been investigated: a combination electromagnet assist and gas springs compressed with a toggle mechanism, and a pneumatic clamp. Simple mechanical models have been developed for predicting the stopping and clamping performance of both designs including pin positioning accuracy, vertical load-carrying capacity of a pin, and deflection of a pin subjected to lateral loads. An RFD prototype, consisting of a single pin actuated by a servoed platen, has been designed, built and tested. It has demonstrated the feasibility of this new RFD design. [S1087-1357(00)02204-8]


Author(s):  
Prakash ◽  
D. Ceglarek ◽  
M. K. Tiwari

This paper develops a new diagnostics methodology for N-2-1 fixtures used in assembly processes with compliant parts. The developed methodology includes: (i) the predetermined CAD-based dimensional variation fault patterns model; (ii) data-based dimensional variation fault model; and (iii) the fault mapping procedure isolating the unknown fault. The CAD-based variation fault pattern model is based on the piece-wise linear bi-partitioning of compliant part into deformed (faulty) and un-deformed regions. Data-based dimensional variation fault models are based on the statistical modal analysis (SMA) which allow to model part deformation with varying number of deformation modes. It is proved in the paper that these independent deformation modes are equivalent to the CAD-based faults models obtained in (i). The fault mapping procedure allows to diagnose the unknown fault by comparing the unknown fault variation pattern obtained from the SMA model with one of the predetermined CAD-based fault patterns. One industrial case study from an automotive roof framing assembly illustrates the proposed method.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Xia Liu ◽  
Luling An ◽  
Zhiguo Wang ◽  
Changbai Tan ◽  
Xiaoping Wang ◽  
...  

A typical aircraft panel is the assembly consisting of a multitude of thin and lightweight compliant parts. In panel assembly process, part-to-part locating scheme has been widely adopted in order to reduce fixtures. By this locating scheme, a part is located onto the pre-fixed part/subassembly by determinant assembly (DA) holes, and temporary fasteners (e.g., spring pin) are used for joining these DA hole-hole pairs. The temporary fasteners can fasten DA hole-hole pairs in the axial and radial directions of DA holes. The fastening in the radial directions is realized by the expansion of temporary fasteners. Although the usage of temporary fasteners helps reduce the positional differences between hole-hole pairs, their clamping forces thereby may lead to elastic deformation of compliant parts/subassemblies. Limited research has been conducted on such elastic deformation produced by temporary fastener and its influence on assembly dimensional quality. This paper proposes a novel rigid-compliant variation analysis method for aircraft panel assembly, incorporating the deformation in part-to-part locating process. Based on the kinematic theory and linear elasticity deformation assumption, the variation propagation through the locating process, as well as the entire assembly process of an aircraft panel, is formulated. Then, the statistical variation analysis is performed with Monte Carlo (MC) simulation. Finally, the proposed method is validated by a case study. The result shows the deformation in the part-to-part locating process significantly impacts the assembly variations, and our method can provide a more accurate and reliable prediction.


2020 ◽  
Vol 21 (4) ◽  
pp. 1665-1690
Author(s):  
Maria Stefanova ◽  
Olga Minevich ◽  
Stanislav Baklanov ◽  
Margarita Petukhova ◽  
Sergey Lupuleac ◽  
...  

Abstract A special class of quadratic programming (QP) problems is considered in this paper. This class emerges in simulation of assembly of large-scale compliant parts, which involves the formulation and solution of contact problems. The considered QP problems can have up to 20,000 unknowns, the Hessian matrix is fully populated and ill-conditioned, while the matrix of constraints is sparse. Variation analysis and optimization of assembly process usually require massive computations of QP problems with slightly different input data. The following optimization methods are adapted to account for the particular features of the assembly problem: an interior point method, an active-set method, a Newton projection method, and a pivotal algorithm for the linear complementarity problems. Equivalent formulations of the QP problem are proposed with the intent of them being more amenable to the considered methods. The methods are tested and results are compared for a number of aircraft assembly simulation problems.


Author(s):  
Sergey Lupuleac ◽  
Nadezhda Zaitseva ◽  
Maria Stefanova ◽  
Sergey Berezin ◽  
Julia Shinder ◽  
...  

The paper presents a simulation of the Airbus A350-900 wing-to-fuselage assembly process. The latter is a complex multistage process where the compliant parts are being joined by riveting. The current research analyzes the quality of the temporary fastener arrangement. The fastener arrangement is being checked to ensure that the residual gap between joined parts is small, and the fastener loads closing the gap are calculated. The deviations of the part shape from nominal are modeled via initial gaps. A cloud of initial gaps is generated based on the statistical analysis of the available measurements assuming the stochastic nature of local gap roughness. Through the reduction of the corresponding contact problem to a quadratic programming (QP) problem and the use of efficient QP algorithms together with the task-level parallelism, the mass contact problem solving on refined grids is accomplished.


Procedia CIRP ◽  
2016 ◽  
Vol 46 ◽  
pp. 307-310 ◽  
Author(s):  
Kaveh Babanezhad ◽  
Gilles Foucault ◽  
Antoine Tahan ◽  
Jean Bigeon

Author(s):  
F. J. Campa ◽  
L. N. Lopez de Lacalle ◽  
G. Urbikain ◽  
D. Ruiz

The main drawback of the high speed milling of monolithic parts for the aerospace industry is the high buy-to-fly ratio that leads to a huge material waste. This problem is caused by the need to stiffen the part during the machining in order to avoid chatter, excessive vibration and residual stresses. The present work proposes a methodology for the milling of compliant parts based on the selection of cutting conditions free of chatter. First, the modal parameters of the part in the most problematic stages of the machining are calculated by means of the finite elements method. Secondly, a three-dimensional stability model is used in each stage to calculate a three-dimensional stability lobes diagram dependent on the tool position along the whole tool path. Given the fact that the depth of cut is defined by the bulk of material, the three-dimensional stability diagram can be reduced to a two-dimensional one, which relates tool position during the machining and spindle speed, and indicates how to change the spindle speed in order to avoid the unstable areas. What is more, the proposed methodology can also be used to dimension the bulk of material, select the proper tool or improve the fixturing of the part. Finally, the methodology is validated experimentally on a test part.


2011 ◽  
Vol 4 (1) ◽  
pp. 799-807 ◽  
Author(s):  
Meike Schaub ◽  
Jörg Uthoff

2014 ◽  
Vol 9 (1) ◽  
pp. 016010 ◽  
Author(s):  
Hadi El Daou ◽  
Taavi Salumäe ◽  
Lily D Chambers ◽  
William M Megill ◽  
Maarja Kruusmaa

2000 ◽  
Vol 123 (3) ◽  
pp. 473-480 ◽  
Author(s):  
D. Ceglarek ◽  
H. F. Li ◽  
Y. Tang

Material handling of compliant parts is one of the most critical and underresearched problems in the sheet metal stamping industry. The fundamental shortcoming of currently studied material handling systems for sheet metal stamping is the lack of analysis of its impact on part dimensional quality and production throughput. This paper addresses this problem by development of a generic methodology for modeling and optimization of part holding end-effector layout in order to minimize part dimensional deformation during handling operations. The methodology extends the design of “N-2-1” fixturing layout by adding part movability conditions. It considers part CAD model, handling direction and motion kinematic parameters to determine the best end effector layout. This methodology is realized by integrating FEM part and loading modeling with the optimization algorithm. It can be implemented into the design stage of a stamping line so that the trial and error process, which is current industrial practice, can be greatly shortened and the production throughput increased. Experimental results verify the proposed part holding end-effector layout methodology.


Sign in / Sign up

Export Citation Format

Share Document