Production of nigerloxin, an enzyme inhibitor and a free radical scavenger, by Aspergillus niger using solid state fermentation

2005 ◽  
Vol 40 (7) ◽  
pp. 2517-2522 ◽  
Author(s):  
K.C. Sekhar Rao ◽  
N.G. Karanth ◽  
A.P. Sattur
1986 ◽  
Vol 39 (2) ◽  
pp. 357 ◽  
Author(s):  
WK Busfield ◽  
LM Engelhardt ◽  
PC Healy ◽  
ID Jenkins ◽  
SH Thang ◽  
...  

The structures of the title nitroxide , C12H16NO (1), and the alkoxy amine derivative, C18H24N2O2 (2), have been determined by single-crystal X-ray structural analyses. Crystals of (1) are monoclinic, space group Cc with a 11.585(6), b 11.697(10), c 16.753(8)Ǻ, β 94.33(6)°, Z 8; R was 0.064 for 1226 independent reflections. The -C(NO)C- group is essentially planar (sum trigonal angles 359.9, 359.9°, as is the five- membered ring. The N-O distances are 1.249(6), 1.252(8)Ǻ. Crystals of (2) are monoclinic, space group P21/c, a 8.295(2), b 13.567(5), c 15.294(3)Ǻ, β 98.82(2)°, Z 4; R was 0.051 for 1445 independent reflections. By contrast to (1) the geometry about the nitrogen atom is pyramidal (sum trigonal angles 328°), and the corresponding five-membered ring has an envelope conformation with a nitrogen displacement of 0.45Ǻ. The N-O distance is 1.439(4)Ǻ. The high-resolution solid state 13C n.m.r . spectrum of (2) is discussed in relation to the X-ray structure.


2019 ◽  
Vol 3 (2) ◽  
pp. 35
Author(s):  
Kartini Kartini ◽  
Azminah Azminah

In order to prepare standardized extract, optimization of extraction conditions of grape seed has been done. These conditions are type of menstrum (50, 70 and 96% of ethanolic solution), length of extraction (1, 2 and 4 hours) also method of evaporation (reduced pressure and opened air). Activity on free radical scavenger used as parameters to determine optimum conditions. Based on EC50 (concentration which scavenge 50% amount of free radical) can be concluded that optimum condition for extracting antioxidant active compound from grape seed are 70% ethanolic solution as menstrum, length of extraction 1 hour and evaporation on opened air use water bath.


2020 ◽  
Vol 10 (01) ◽  
pp. e104-e109
Author(s):  
Antonio Molina-Carballo ◽  
Antonio Emilio Jerez-Calero ◽  
Antonio Muñoz-Hoyos

AbstractMelatonin, produced in every cell that possesses mitochondria, acts as an endogenous free radical scavenger, and improves energetic metabolism and immune function, by complex molecular crosstalk with other intracellular compounds. There is greatly increasing evidence regarding beneficial effects of acute and chronic administration of high melatonin doses, in infectious, developmental, and degenerative pathologies, as an endothelial cell and every cell protectant.


2021 ◽  
Vol 9 (5) ◽  
pp. 895
Author(s):  
Carlotta Alias ◽  
Daniela Bulgari ◽  
Fabjola Bilo ◽  
Laura Borgese ◽  
Alessandra Gianoncelli ◽  
...  

A low-energy paradigm was adopted for sustainable, affordable, and effective urban waste valorization. Here a new, eco-designed, solid-state fermentation process is presented to obtain some useful bio-products by recycling of different wastes. Urban food waste and scraps from trimmings were used as a substrate for the production of citric acid (CA) by solid state fermentation of Aspergillus niger NRRL 334, with a yield of 20.50 mg of CA per gram of substrate. The acid solution was used to extract metals from waste printed circuit boards (WPCBs), one of the most common electronic waste. The leaching activity of the biological solution is comparable to a commercial CA one. Sn and Fe were the most leached metals (404.09 and 67.99 mg/L, respectively), followed by Ni and Zn (4.55 and 1.92 mg/L) without any pre-treatments as usually performed. Commercial CA extracted Fe more efficiently than the organic one (123.46 vs. 67.99 mg/L); vice versa, biological organic CA recovered Ni better than commercial CA (4.55 vs. 1.54 mg/L). This is the first approach that allows the extraction of metals from WPCBs through CA produced by A. niger directly grown on waste material without any sugar supplement. This “green” process could be an alternative for the recovery of valuable metals such as Fe, Pb, and Ni from electronic waste.


1997 ◽  
Vol 82 (4) ◽  
pp. 1119-1125 ◽  
Author(s):  
G. S. Supinski ◽  
D. Stofan ◽  
R. Ciufo ◽  
A. Dimarco

Supinski, G. S., D. Stofan, R. Ciufo, and A. DiMarco. N-acetylcysteine administration alters the response to inspiratory loading in oxygen-supplemented rats. J. Appl. Physiol. 82(4): 1119–1125, 1997.—Based on recent studies, it has been suggested that free radicals are elaborated in the respiratory muscles during strenuous contractions and contribute to the development of muscle fatigue. If this theory is correct, then it should be possible to attenuate the development of diaphragm fatigue and/or delay the onset of respiratory failure during loaded breathing by administering a free radical scavenger. The purpose of the present experiment was, therefore, to examine the effect of N-acetylcysteine (NAC), a free radical scavenger and glutathione precursor, on the evolution of respiratory failure in decerebrate unanesthetized rats breathing against a large inspiratory resistive load. We compared the inspiratory volume and pressure generation over time in animals pretreated with either saline or NAC (150 mg/kg) and then loaded until respiratory arrest. After arrest, the diaphragm was excised, and samples were assayed for reduced (GSH) and oxidized glutathione. As a control, we also assessed respiratory function and glutathione concentrations in groups of nonloaded saline- and NAC-treated animals. We found that NAC-treated animals were able to tolerate loading better than the saline-treated group, maintaining higher inspiratory pressures and sustaining higher inspired volumes. Administration of NAC also increased the time that animals could tolerate loading before the development of respiratory arrest. In addition, although saline-treated loaded animals had significant reductions in diaphragmatic GSH levels compared with unloaded controls, the magnitude of this reduction was blunted by NAC administration (i.e., GSH averaged 965 ± 113, 568 ± 83, 907 ± 39, and 784 ± 61 nmol/g for unloaded-saline, loaded-saline, unloaded-NAC, and loaded-NAC groups, P< 0.05, with the value for the loaded-saline group lower than the values for the two unloaded groups; GSH for the loaded-NAC group was not different, however, from unloaded controls). These data demonstrate that administration of NAC, a free radical scavenger, slows the rate of development of respiratory failure during inspiratory resistive loading.


Sign in / Sign up

Export Citation Format

Share Document