Production, purification and functional characterization of phospholipase C from Bacillus thuringiensis with high catalytic activity

2019 ◽  
Vol 83 ◽  
pp. 122-130 ◽  
Author(s):  
Ahlem Eddehech ◽  
Nabil Smichi ◽  
Yani Arhab ◽  
Alexandre Noiriel ◽  
Abdelkarim Abousalham ◽  
...  
2019 ◽  
Vol 777 ◽  
pp. 655-662 ◽  
Author(s):  
A.V. Egorysheva ◽  
O.G. Ellert ◽  
E. Yu Liberman ◽  
D.I. Kirdyankin ◽  
S.V. Golodukhina ◽  
...  

2006 ◽  
Vol 394 (1) ◽  
pp. 163-171 ◽  
Author(s):  
Sandra Müller ◽  
Jennifer Disse ◽  
Manuela Schöttler ◽  
Sylvia Schön ◽  
Christian Prante ◽  
...  

Human XT-I (xylosyltransferase I; EC 2.4.2.26) initiates the biosynthesis of the glycosaminoglycan linkage region and is a diagnostic marker of an enhanced proteoglycan biosynthesis. In the present study, we have investigated mutant enzymes of human XT-I and assessed the impact of the N-terminal region on the enzymatic activity. Soluble mutant enzymes of human XT-I with deletions at the N-terminal domain were expressed in insect cells and analysed for catalytic activity. As many as 260 amino acids could be truncated at the N-terminal region of the enzyme without affecting its catalytic activity. However, truncation of 266, 272 and 273 amino acids resulted in a 70, 90 and >98% loss in catalytic activity. Interestingly, deletion of the single 12 amino acid motif G261KEAISALSRAK272 leads to a loss-of-function XT-I mutant. This is in agreement with our findings analysing the importance of the Cys residues where we have shown that C276A mutation resulted in a nearly inactive XT-I enzyme. Moreover, we investigated the location of the heparin-binding site of human XT-I using the truncated mutants. Heparin binding was observed to be slightly altered in mutants lacking 289 or 568 amino acids, but deletion of the potential heparin-binding motif P721KKVFKI727 did not lead to a loss of heparin binding capacity. The effect of heparin or UDP on the XT-I activity of all mutants was not significantly different from that of the wild-type. Our study demonstrates that over 80% of the nucleotide sequence of the XT-I-cDNA is necessary for expressing a recombinant enzyme with full catalytic activity.


2005 ◽  
Vol 388 (2) ◽  
pp. 493-500 ◽  
Author(s):  
Chandra N. PATEL ◽  
David W. KOH ◽  
Myron K. JACOBSON ◽  
Marcos A. OLIVEIRA

PARG [poly(ADP-ribose) glycohydrolase] catalyses the hydrolysis of α(1″→2′) or α(1‴→2″) O-glycosidic linkages of ADP-ribose polymers to produce free ADP-ribose. We investigated possible mechanistic similarities between PARG and glycosidases, which also cleave O-glycosidic linkages. Glycosidases typically utilize two acidic residues for catalysis, thus we targeted acidic residues within a conserved region of bovine PARG that has been shown to contain an inhibitor-binding site. The targeted glutamate and aspartate residues were changed to asparagine in order to minimize structural alterations. Mutants were purified and assayed for catalytic activity, as well as binding, to an immobilized PARG inhibitor to determine ability to recognize substrate. Our investigation revealed residues essential for PARG catalytic activity. Two adjacent glutamic acid residues are found in the conserved sequence Gln755-Glu-Glu757, and a third residue found in the conserved sequence Val737-Asp-Phe-Ala-Asn741. Our functional characterization of PARG residues, along with recent identification of an inhibitor-binding residue Tyr796 and a glycine-rich region Gly745-Gly-Gly747 important for PARG function, allowed us to define a PARG ‘signature sequence’ [vDFA-X3-GGg-X6–8-vQEEIRF-X3-PE-X14-E-X12-YTGYa], which we used to identify putative PARG sequences across a range of organisms. Sequence alignments, along with our mapping of PARG functional residues, suggest the presence of a conserved catalytic domain of approx. 185 residues which spans residues 610–795 in bovine PARG.


2014 ◽  
Vol 7 (11) ◽  
pp. 860-866 ◽  
Author(s):  
Nooran Sherif Elleboudy ◽  
Mohammad Mabrouk Aboulwafa ◽  
Nadia Abdel-Haleem Hassouna

2015 ◽  
Vol 154 ◽  
pp. 47-50 ◽  
Author(s):  
Yongyun Mao ◽  
Jianwei Wei ◽  
Chuan Wang ◽  
Yang Feng ◽  
Hongwei Yang ◽  
...  

2005 ◽  
Vol 230 (1-2) ◽  
pp. 143-150 ◽  
Author(s):  
Lingping Wang ◽  
Aiguo Kong ◽  
Bo Chen ◽  
Hanming Ding ◽  
Yongkui Shan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document