scholarly journals Preliminary Evidence of Inositol Supplementation Effect on Cell Growth, Viability and Plasma Membrane Fluidity of the Yeast Saccharomyces Cerevisiae

2015 ◽  
Vol 17 ◽  
pp. 162-169 ◽  
Author(s):  
Safri Ishmayana ◽  
Ursula J. Kennedy ◽  
Robert P. Learmonth
1996 ◽  
Vol 24 (4) ◽  
pp. 554S-554S
Author(s):  
Aneta Koceva-Chyla ◽  
Krzysztof Gwozdzinski ◽  
Malgorzata Moderska ◽  
Zofia Jozwiak

1993 ◽  
Vol 120 (5) ◽  
pp. 1203-1215 ◽  
Author(s):  
K Kuchler ◽  
H G Dohlman ◽  
J Thorner

STE6 gene product is required for secretion of the lipopeptide mating pheromone a-factor by Saccharomyces cerevisiae MATa cells. Radiolabeling and immunoprecipitation, either with specific polyclonal antibodies raised against a TrpE-Ste6 fusion protein or with mAbs that recognize c-myc epitopes in fully functional epitope-tagged Ste6 derivatives, demonstrated that Ste6 is a 145-kD phosphoprotein. Subcellular fractionation, various extraction procedures, and immunoblotting showed that Ste6 is an intrinsic plasma membrane-associated protein. The apparent molecular weight of Ste6 was unaffected by tunicamycin treatment, and the radiolabeled protein did not bind to concanavalin A, indicating that Ste6 is not glycosylated and that glycosylation is not required either for its membrane delivery or its function. The amino acid sequence of Ste6 predicts two ATP-binding folds; correspondingly, Ste6 was photoaffinity-labeled specifically with 8-azido-[alpha-32P]ATP. Indirect immunofluorescence revealed that in exponentially growing MATa cells, the majority of Ste6 showed a patchy distribution within the plasma membrane, but a significant fraction was found concentrated in a number of vesicle-like bodies subtending the plasma membrane. In contrast, in MATa cells exposed to the mating pheromone alpha-factor, which markedly induced Ste6 production, the majority of Ste6 was incorporated into the plasma membrane within the growing tip of the elongating cells. The highly localized insertion of this transporter may establish pronounced anisotropy in a-factor secretion from the MATa cell, and thereby may contribute to the establishment of the cell polarity which restricts partner selection and cell fusion during mating to one MAT alpha cell.


1989 ◽  
Vol 4 (3) ◽  
pp. 221-227 ◽  
Author(s):  
ANTONIO BENEDETTI ◽  
GIANNA FERRETTI ◽  
GIOVANNA CURATOLA ◽  
EUGENIO BRUNELLI ◽  
ANNE MARIE JÉZÉQUEL ◽  
...  

1994 ◽  
Vol 3 (7) ◽  
pp. S21-S24 ◽  
Author(s):  
A. Kantar ◽  
N. Oggiano ◽  
P. L. Giorgi ◽  
G. V. Coppa ◽  
R. Gabbianelli ◽  
...  

The effect of nedocromil sodium on the plasma membrane fluidity of polymorphonuclear leukocytes (PMNs) was investigated by measuring steady-state fluorescence anisotropy of 1-[4-trimethylammonium-phenyl]-6-phenyl- 1,3,5-hexatriene (TMA-DPH) incorporated in the membrane. Our results show that nedocromil sodium 300 μM significantly decreased membrane fluidity of PMNs. The decrease in membrane fluidity of PMNs induced by fMLP was abolished in the presence of nedocromil sodium. These data suggest that nedocromil sodium interferes with the plasma membranes of PMNs and modulates their activities.


1979 ◽  
Vol 64 (2) ◽  
pp. 315-326 ◽  
Author(s):  
Thomas B. Eckstein ◽  
William R. Randall ◽  
Mark G. McNamee

1988 ◽  
Vol 254 (6) ◽  
pp. C781-C787 ◽  
Author(s):  
N. P. Sheridan ◽  
E. R. Block

Plasma membrane vesicles were prepared from porcine pulmonary artery endothelial cells by a dextran-polyethylene glycol two-phase system. Specific carrier-mediated transport of 5-hydroxytryptamine (5-HT) into the vesicles was examined. Transport required a Na+ gradient (out greater than in) across the membrane, and accumulated 5-HT rapidly effluxed out of the vesicles when the ionophore gramicidin was added. Transport was inhibited by the antidepressant imipramine. 5-HT transport into plasma membrane vesicles appeared saturable and exhibited Michaelis-Menten kinetics (Km 7.4 microM, maximal velocity 217 pmol.min-1.mg membrane protein-1). A 24-h exposure to 95% O2 at 1 atmosphere absolute resulted in a 21% decrease (P less than 0.05) in specific 5-HT transport by plasma membrane vesicles. Hyperoxia also caused a significant (P less than 0.01) decrease in plasma membrane fluidity, as measured with the fluorescence probe 1,6-diphenyl-1,3,5-hexatriene. These results indicate that pulmonary artery endothelial cell plasma membrane vesicles provide a good model for studying 5-HT transport activity in vitro. Hyperoxia affects plasma membrane fluidity and 5-HT transport in pulmonary artery endothelial cells, suggesting a possible cause-and-effect relationship between the two.


Sign in / Sign up

Export Citation Format

Share Document