scholarly journals Numerical study of the effects of pressure on soot formation in laminar coflow n-heptane/air diffusion flames between 1 and 10 atm

2015 ◽  
Vol 35 (2) ◽  
pp. 1727-1734 ◽  
Author(s):  
Jean-Louis Consalvi ◽  
Fengshan Liu
2020 ◽  
Vol 194 ◽  
pp. 04054
Author(s):  
Bencheng Zhu ◽  
Yuhan Zhu ◽  
Jiajia Wu ◽  
Kun Lu ◽  
Yang Wang ◽  
...  

This article employs the CoFlame Code to investigate the effects of hydrogen addition to fuel on soot formation characteristics in laminar coflow methane/air diffusion flames at atmospheric pressure. Numerical calculations were carried out using a detailed C1-C2 gas phase reaction mechanism and a soot model consisting of two pyrene molecules colliding into a dimer as soot nucleation, hydrogen abstraction acetylene addition (HACA) and pyrene condensation as surface growth, and soot oxidation by O2, O and OH radicals. Calculations were conducted for five levels of hydrogen addition on volume basis. To quantify the chemical effect of hydrogen, additional calculations are performed for addition of inert pseudo-hydrogen (FH2). The addition of H2 or FH2 does not have a strong influence on flame temperature. The results confirm that hydrogen addition can inhibit soot formation in the methane/air diffusion flame by reducing both the nucleation and surface growth steps of soot formation process. The effect of FH2 addition on soot formation suppression is more remarkable than H2, indicating that the chemical effect of hydrogen added to methane prompts soot formation. The dilution effect of hydrogen addition on soot formation suppression is stronger than its chemical effect on soot formation enhancement the present findings are consistent with those of previous numerical studies.


Fuel ◽  
2022 ◽  
Vol 309 ◽  
pp. 122244
Author(s):  
Andisheh Khanehzar ◽  
Francisco Cepeda ◽  
Seth B. Dworkin

Author(s):  
Hongsheng Guo ◽  
W. Stuart Neill

A numerical study was carried out to understand the effect of CO enrichment on flame temperature and NO formation in counterflow CH4/air diffusion flames. The results indicate that when CO is added to the fuel, both flame temperature and NO formation rate are changed due to the variations in adiabatic flame temperature, fuel Lewis number, and chemical reaction. At a low strain rate, the addition of carbon monoxide causes a monotonic decrease in flame temperature and peak NO concentration. However, NO emission index first slightly increases, and then decreases. At a moderate strain rate, the addition of CO has negligible effect on flame temperature and leads to a slight increase in both peak NO concentration and NO emission index, until the fraction of carbon monoxide reaches about 0.7. Then, with a further increase in the fraction of added carbon monoxide, all three quantities quickly decrease. At a high strain rate, the addition of carbon monoxide causes increase in flame temperature and NO formation rate, until a critical carbon monoxide fraction is reached. After the critical fraction, the further addition of carbon monoxide leads to decrease in both flame temperature and NO formation rate.


2021 ◽  
Author(s):  
Armin Veshkini ◽  
Seth B. Dworkin

A numerical study is conducted of methane-air coflow diffusion flames at microgravity (μg) and normal gravity (lg), and comparisons are made with experimental data in the literature. The model employed uses a detailed gas phase chemical kinetic mechanism that includes PAH formation and growth, and is coupled to a sectional soot particle dynamics model. The model is able to accurately predict the trends observed experimentally with reduction of gravity without any tuning of the model for different flames. The microgravity sooting flames were found to have lower temperatures and higher volume fraction than their normal gravity counterparts. In the absence of gravity, the flame radii increase due to elimination of buoyance forces and reduction of flow velocity, which is consistent with experimental observations. Soot formation along the wings is seen to be surface growth dominated, while PAH condensation plays a more major role on centerline soot formation. Surface growth and PAH growth increase in microgravity primarily due to increases in the residence time inside the flame. The rate of increase of surface growth is more significant compared to PAH growth, which causes soot distribution to shift from the centerline of the flame to the wings in microgravity. Keywords: laminar diffusion flame,methane-air,microgravity, soot formation, numerical modelling


Sign in / Sign up

Export Citation Format

Share Document