scholarly journals Surface Integrity in Hard Machining of 300M Steel: Effect of Cutting-edge Geometry on Machining Induced Residual Stresses

Procedia CIRP ◽  
2014 ◽  
Vol 13 ◽  
pp. 288-293 ◽  
Author(s):  
P.I. Varela ◽  
C.S. Rakurty ◽  
A.K. Balaji
1999 ◽  
Author(s):  
Jeffrey D. Thiele ◽  
Shreyes N. Melkote ◽  
Roberta A. Peascoe ◽  
Thomas R. Watkins

Abstract An experimental investigation was conducted to determine the effects of tool cutting-edge geometry and workpiece hardness on surface residual stresses for finish hard turning of through-hardened AISI 52100 steel. Polycrystalline cubic boron nitride (PCBN) inserts with representative types of edge geometry including “up-sharp” edges, edge hones, and chamfers, were used as the cutting tools in this study. This study shows that tool edge geometry is highly influential with respect to surface residual stresses, which were measured using x-ray diffraction. In general, compressive surface residual stresses in the axial and circumferential directions were generated by large edge hone tools, for longitudinal turning operations. Residual stresses in the axial and circumferential directions generated by small edge hone tools are typically more tensile than stresses produced by large edge hone tools. Microstructural analysis shows that thermal effects are significant at high feed rates, based on the presence of phase changes on the workpiece surface. At high feed rates, compressive stresses correlate with continuous white layers and tensile stresses correlate with over-tempered regions on the surface of the workpiece. Mechanical effects play a larger role at low feed rates, where phase changes are not observed to a significant degree. For these cases, large edge hone tools generally produce more compressive values of residual stress than small edge hone tools.


1999 ◽  
Vol 122 (4) ◽  
pp. 642-649 ◽  
Author(s):  
Jeffrey D. Thiele ◽  
Shreyes N. Melkote ◽  
Roberta A. Peascoe ◽  
Thomas R. Watkins

An experimental investigation was conducted to determine the effects of tool cutting-edge geometry (edge preparation) and workpiece hardness on surface residual stresses for finish hard turning of through-hardened AISI 52100 steel. Polycrystalline cubic boron nitride (PCBN) inserts with representative types of edge geometry including “up-sharp” edges, edge hones, and chamfers were used as the cutting tools in this study. This study shows that tool edge geometry is highly influential with respect to surface residual stresses, which were measured using x-ray diffraction. In general, compressive surface residual stresses in the axial and circumferential directions were generated by large edge hone tools in longitudinal turning operations. Residual stresses in the axial and circumferential directions generated by large edge hone tools are typically more compressive than stresses produced by small edge hone tools. Microstructural analysis shows that thermally-induced phase transformation effects are present at all feeds and workpiece hardness values with the large edge hone tools, and only at high feeds and hardness values with the small edge hone tools. In general, continuous white layers on the workpiece surface correlate with compressive residual stresses, while over-tempered regions correlate with tensile or compressive residual stresses depending on the workpiece hardness. [S1087-1357(00)00304-X]


2018 ◽  
Vol 108 (10) ◽  
pp. 736-742
Author(s):  
J. Hartig ◽  
B. Kirsch ◽  
J. Aurich

Mit Schneidkantenpräparation kann das Werkzeug im Zerspanprozess an die Bearbeitungsaufgabe angepasst werden. Homogene Präparationen können dabei entweder auf hohe Belastungen des Werkzeugs oder ein optimiertes Bearbeitungsergebnis im Sinne der Oberfläche ausgelegt werden. In diesem Beitrag wurden die Schneidkanten von Hartmetall-Wendeschneidplatten unterschiedlich inhomogen präpariert, um den unterschiedlichen Anforderungen entlang des Eingriffs Rechnung zu tragen. Neben der Werkzeugstandzeit wurde das Prozessergebnis beim Außenlängs-Runddrehen von ausferritischem Gusseisen (ADI) 900 untersucht.   The preparation of cutting edges allows for tools to be tailored to the machining process. A homogeneous preparation can either be designed for high loads in the machining process or an optimized machining result on the surface. In this article, the cutting edges of tungsten carbide indexable inserts were prepared inhomogeneously and thus individually matched to the machining task. Tool life and machining performance while turning austempered ductile iron (ADI) 900 were investigated.


Sign in / Sign up

Export Citation Format

Share Document