scholarly journals Friction Model for Tool/Work Material Contact Applied to Surface Integrity Prediction in Orthogonal Cutting Simulation

Procedia CIRP ◽  
2017 ◽  
Vol 58 ◽  
pp. 578-583 ◽  
Author(s):  
L.A. Denguir ◽  
J.C. Outeiro ◽  
J. Rech ◽  
G. Fromentin ◽  
V. Vignal ◽  
...  
Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4145
Author(s):  
Xiaohua Qian ◽  
Xiongying Duan

As a typical high specific strength and corrosion-resistant alloy, titanium alloy Ti6Al4V is widely used in the aviation, ocean, biomedical, sport, and other fields. The heat treatment method is often used to improve the material mechanical properties. To investigate the dynamic mechanical properties of titanium alloy Ti6Al4V after heat treatment, dynamic compressive experiments under high temperature and high strain rate were carried out using split Hopkinson press bar (SHPB) equipment. The stress–strain curves of Ti6Al4V alloy under different temperatures and strain rates were obtained through SHPB compressive tests. The Johnson–Cook (J–C) constitutive equation was used for expressing the stress–strain relationship of titanium alloy under large deformation. In addition, the material constants of the J–C model were fitted based on the experimental data. An orthogonal cutting simulation was performed to investigate the cutting of Ti6Al4V alloy under two different numerical calculation methods based on the established J–C model using the finite element method (FEM). The simulation results confirm that the adiabatic mode is more suitable to analyze the cutting of Ti6Al4V alloy.


Author(s):  
Tug˘rul O¨zel ◽  
Erol Zeren

In this paper, we develop a methodology to determine flow stress at the machining regimes and friction characteristics at the tool-chip interface from the results of orthogonal cutting tests. We utilize metal cutting analysis originally developed by late Oxley and present some improvements. We also evaluate several temperature models in calculating the average temperatures at primary and secondary deformation zones and present comparisons with the experimental data obtained for AISI 1045 steel through assessment of machining models (AMM) activity. The proposed methodology utilizes measured forces and chip thickness obtained through a basic orthogonal cutting test. We conveniently determine work material flow stress at the primary deformation zone and the interfacial friction characteristics along tool rake face. Calculated friction characteristics include parameters of the normal and frictional stress distributions on the rake face. Determined flow stress data from orthogonal cutting tests is combined with the flow stress measured through split-hopkinson pressure bar (SHPB) tests and the Johnson-Cook work material model is obtained. Therefore, with this methodology, we extend the applicability of Johnson-Cook work material model to machining regimes.


2015 ◽  
Vol 29 (22) ◽  
pp. 1550119
Author(s):  
Shin-Hyung Song ◽  
Woo Chun Choi

Mechanical micromachining is a powerful and effective way for manufacturing small sized machine parts. Even though the micromachining process is similar to the traditional machining, the material behavior during the process is much different. In particular, many researchers report that the basic mechanics of the work material is affected by microstructures and their crystallographic orientations. For example, crystallographic orientations of the work material have significant influence on force response, chip formation and surface finish. In order to thoroughly understand the effect of crystallographic orientations on the micromachining process, finite-element model (FEM) simulating orthogonal cutting process of single crystallographic material was presented. For modeling the work material, rate sensitive single crystal plasticity of face-centered cubic (FCC) crystal was implemented. For the chip formation during the simulation, element deletion technique was used. The simulation model is developed using ABAQUS/explicit with user material subroutine via user material subroutine (VUMAT). Simulations showed that variation of the specific cutting energy at different crystallographic orientations of work material shows significant anisotropy. The developed FEM model can be a useful prediction tool of micromachining of crystalline materials.


2011 ◽  
Vol 117-119 ◽  
pp. 1788-1791
Author(s):  
Yue Feng Yuan ◽  
Wu Yi Chen

It is necessary for cutting simulation to determine the friction model at the tool-chip interface suitable for metal cutting process. Cutting force experiments in orthogonal turning titanium alloy TI6AL4V are carried out with cement carbide tool KW10. The Coulomb frictions at the tool-chip interface are calculated based on measured cutting force, and the friction model is regressed, where cutting speed and feed rate are presented.


2005 ◽  
Vol 128 (1) ◽  
pp. 119-129 ◽  
Author(s):  
Tuğrul Özel ◽  
Erol Zeren

In this paper, we develop a methodology to determine flow stress at the machining regimes and friction characteristics at the tool-chip interface from the results of orthogonal cutting tests. We utilize metal cutting analysis originally developed by late Oxley and present some improvements. We also evaluate several temperature models in calculating the average temperatures at primary and secondary deformation zones and present comparisons with the experimental data obtained for AISI 1045 steel through assessment of machining models (AMM) activity. The proposed methodology utilizes measured forces and chip thickness obtained through a basic orthogonal cutting test. We conveniently determine work material flow stress at the primary deformation zone and the interfacial friction characteristics along the tool rake face. Calculated friction characteristics include parameters of the normal and frictional stress distributions on the rake face that are maximum normal stress σNmax, power exponent for the normal stress distribution, a, length of the plastic contact, lp, length of the tool-chip contact, lc, the average shear flow stress at tool-chip interface, kchip, and an average coefficient of friction, μe, in the sliding region of the tool-chip interface. Determined flow stress data from orthogonal cutting tests is combined with the flow stress measured through split-hopkinson pressure bar (SHPB) tests and the Johnson-Cook work material model is obtained. Therefore, with this methodology, we extend the applicability of a Johnson-Cook work material model to machining regimes.


2011 ◽  
Vol 188 ◽  
pp. 555-560
Author(s):  
Zhao Yu Mou ◽  
Peng Fei Gao ◽  
Wei Fang Wang ◽  
Dong Hui Wen

The purpose of this paper is to compare different simulation model of orthogonal cutting process using three different FEM commercial codes as well as with the results of orthogonal experiment. For one thing, element type, boundary condition and friction model between the chip and tool commercial have been compared when the numerical model established in implicit finite element code, Deform3D and the explicit code ANSYS/LS-DYNA and Thirdwave AdvantEdge. For another, main and thrust cutting forces, shear angles, chip thicknesses and contact lengths by three codes are compared with the orthogonal metal cutting experiment by Movahhedy and Altintas.


Sign in / Sign up

Export Citation Format

Share Document