scholarly journals Effect of cutting parameters on section borders of the empirical specific cutting force model for cutting with micro-sized uncut chip thickness

Procedia CIRP ◽  
2018 ◽  
Vol 77 ◽  
pp. 279-282 ◽  
Author(s):  
István Biró ◽  
Tibor Szalay ◽  
Norbert Geier
Author(s):  
Shih-Ming Wang ◽  
Zou-Sung Chiang ◽  
Da-Fun Chen

To enhance the implementation of micro milling, it is necessary to clearly understand the dynamic characteristics of micro milling so that proper machining parameters can be used to meet the requirements of application. By taking the effect of minimum chip thickness and rake angle into account, a new cutting force model of micro-milling which is function the instantaneous cutting area and machining coefficients was developed. According to the instantaneous rotation trajectory of cutting edge, the cutting area projected to xy-plane was determined by rectangular integral method, and used to solve the instantaneous cutting area. After the machining coefficients were solved, the cutting force of micro-milling for different radial depths of cut and different axial depths of cut can be predicted. The results of micro-milling experimental have shown that the force model can predict the cutting force accurately by which the optimal cutting parameters can be selected for micro-milling application.


CIRP Annals ◽  
2007 ◽  
Vol 56 (1) ◽  
pp. 415-418 ◽  
Author(s):  
H. Paris ◽  
D. Brissaud ◽  
A. Gouskov

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1495
Author(s):  
Tongshun Liu ◽  
Kedong Zhang ◽  
Gang Wang ◽  
Chengdong Wang

The minimum uncut chip thickness (MUCT), dividing the cutting zone into the shear region and the ploughing region, has a strong nonlinear effect on the cutting force of micro-milling. Determining the MUCT value is fundamental in order to predict the micro-milling force. In this study, based on the assumption that the normal shear force and the normal ploughing force are equivalent at the MUCT point, a novel analytical MUCT model considering the comprehensive effect of shear stress, friction angle, ploughing coefficient and cutting-edge radius is constructed to determine the MUCT. Nonlinear piecewise cutting force coefficient functions with the novel MUCT as the break point are constructed to represent the distribution of the shear/ploughing force under the effect of the minimum uncut chip thickness. By integrating the cutting force coefficient function, the nonlinear micro-milling force is predicted. Theoretical analysis shows that the nonlinear cutting force coefficient function embedded with the novel MUCT is absolutely integrable, making the micro-milling force model more stable and accurate than the conventional models. Moreover, by considering different factors in the MUCT model, the proposed micro-milling force model is more flexible than the traditional models. Micro-milling experiments under different cutting conditions have verified the efficiency and improvement of the proposed micro-milling force model.


2018 ◽  
Author(s):  
Isamu Nishida ◽  
Takaya Nakamura ◽  
Ryuta Sato ◽  
Keiichi Shirase

A new method, which accurately predicts cutting force in ball end milling considering cutting edge around center web, has been proposed. The new method accurately calculates the uncut chip thickness, which is required to estimate the cutting force by the instantaneous rigid force model. In the instantaneous rigid force model, the uncut chip thickness is generally calculated on the cutting edge in each minute disk element piled up along the tool axis. However, the orientation of tool cutting edge of ball end mill is different from that of square end mill. Therefore, for the ball end mill, the uncut chip thickness cannot be calculated accurately in the minute disk element, especially around the center web. Then, this study proposes a method to calculate the uncut chip thickness along the vector connecting the center of the ball and the cutting edge. The proposed method can reduce the estimation error of the uncut chip thickness especially around the center web compared with the previous method. Our study also realizes to calculate the uncut chip thickness discretely by using voxel model and detecting the removal voxels in each minute tool rotation angle, in which the relative relationship between a cutting edge and a workpiece, which changes dynamically during tool rotation. A cutting experiment with the ball end mill was conducted in order to validate the proposed method. The results showed that the error between the measured and predicted cutting forces can be reduced by the proposed method compared with the previous method.


2011 ◽  
Vol 86 ◽  
pp. 100-103
Author(s):  
Qian Guo ◽  
Chao Lin ◽  
Wei Quan

This paper makes the emulate experimental research of cutting force in high-speed dry gear milling by flying cutter with finite element analysis method by using the established cutting force model yet, makes the comparative analysis for the result of simulation experiment and theoretical calculation, verifies the correctness of cutting force model and calculation method, makes the comparative analysis for the influencing relations and changing laws of cutting force and cutting parameters and so many factors, and reveals the cutting mechanism of high-speed dry gear milling by flying cutter initially. By the research of this paper, it provides basic theory for subsequent cutting machine technology of high-speed dry gear hobbing, and establishes the theoretical basis for the spread and exploitation of this technology.


2010 ◽  
Vol 42 ◽  
pp. 242-245
Author(s):  
Yong Jie Ma ◽  
Yi Du Zhang ◽  
Xiao Ci Zhao

In the present study, aluminum alloy 2014 was selected as workpiece material, cutting forces were measured under turning conditions. Cutting parameters, the depth of cut, feed rate, the cutting speed, were considered to arrange the test research. Mathematical model of turning force was solved through response surface methodology (RSM). The fitting of response surface model for the data was studied by analysis of variance (ANOVA). The quadratic model of RSM associated with response optimization technique and composite desirability was used to find optimum values of machining parameters with respect to cutting force values. The turning force coefficients in the model were calibrated with the test results, and the suggested models of cutting forces adequately map within the limits of the cutting parameters considered. Experimental results suggested that the most cutting force among three cutting forces was main cutting force. Main influencing factor on cutting forces was obtained through cutting force models and correlation analysis. Cutting force has a significant influence on the part quality. Based on the cutting force model, a few case studies could be presented to investigate the precision machining of aluminum alloy 2014 thin walled parts.


2000 ◽  
Vol 123 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Hsi-Yung Feng ◽  
Ning Su

This paper presents an improved mechanistic cutting force model for the ball-end milling process. The objective is to accurately model the cutting forces for nonhorizontal and cross-feed cutter movements in 3D finishing ball-end milling. Main features of the model include: (1) a robust cut geometry identification method to establish the complicated engaged area on the cutter; (2) a generalized algorithm to determine the undeformed chip thickness for each engaged cutting edge element; and (3) a comprehensive empirical chip-force relationship to characterize nonhorizontal cutting mechanics. Experimental results have shown that the present model gives excellent predictions of cutting forces in 3D ball-end milling.


2008 ◽  
Vol 375-376 ◽  
pp. 31-35
Author(s):  
Jun Zhou ◽  
Jian Feng Li ◽  
Jie Sun ◽  
Zhi Ping Xu

In machining, the size effect is typically characterized by a non-linear increase in the specific cutting energy (or specific cutting force) as the uncut chip thickness is decreased. A finite element model of orthogonal micro-cutting was established to study the influence of tool edge radius on size effect when cutting 7050-T7451 aluminum alloy. Diamond cutting tool was used in the simulation. Specific cutting force and specific cutting energy are obtained through the simulation. The nonlinear scaling phenomenon is evident. The likely explanations for the size effect in small uncut chip thickness were discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document