scholarly journals Design and optimization of energy-efficient milling processes using a geometric physically-based process simulation system

Procedia CIRP ◽  
2020 ◽  
Vol 88 ◽  
pp. 270-275
Author(s):  
Andreas Wirtz ◽  
Dirk Biermann ◽  
Petra Wiederkehr
2021 ◽  
Author(s):  
Yongbiao Zhai ◽  
Zihao Feng ◽  
Ye Zhou ◽  
Su-Ting Han

We review the physics, design, and optimization of four steep-slope transistors and demonstrate their potential and drawbacks.


Author(s):  
Jinling Wang ◽  
Wen F. Lu

Virtual reality technology plays an important role in the fields of product design, computer animation, medical simulation, cloth motion, and many others. Especially with the emergence of haptics technology, virtual simulation system provides an intuitive way of human and computer interaction, which allows user to feel and touch the virtual environment. For a real-time simulation system, a physically based deformable model including complex material properties with a high resolution is required. However, such deformable model hardly satisfies the update rate of interactive haptic rendering that exceeds 1 kHz. To tackle this challenge, a real-time volumetric model with haptic feedback is developed in this paper. This model, named as Adaptive S-chain model, extends the S-chain model and integrates the energy-based wave propagation method by the proposed adaptive re-mesh method to achieve realistic graphic and haptic deformation results. The implemented results show that the nonlinear, heterogeneous, anisotropic, shape retaining material properties and large range deformation are well modeled. An accurate force feedback is generated by the proposed Adaptive S-chain model in case study which is quite close to the experiment data.


Author(s):  
Han Ul Lee ◽  
Dong-Woo Cho

In this paper, a milling process simulation system was constructed and ME Z-map (Moving Edge node Z-map) model was developed to elevate the performance of this system. The milling process simulation system computes the cutting configuration and then the cutting forces are predicted using these calculated configurations. In this system, an improved cutting force model which is independent of cutting conditions is used to more precisely predict the cutting forces. In the process, the ME Z-map model was used for more accurate computing of cutting configuration. Due to the edge node, ME Z-map model produces more accurate cutting configuration than the conventional Z-map models even with five to ten times larger grid size, which reduces the computing time dramatically. The superiority of the ME Z-map model was confirmed through comparison with the conventional Z-map.


Author(s):  
E.W. Scheckler ◽  
A.S. Wong ◽  
R.H. Wang ◽  
G. Chin ◽  
J.R. Camagna ◽  
...  

2007 ◽  
Vol 558-559 ◽  
pp. 1035-1042 ◽  
Author(s):  
Myrjam Winning ◽  
Dierk Raabe ◽  
Abhijit P. Brahme

The study presents an analytical model for predicting crystallographic textures and the final grain size during primary static recrystallization of metals using texture components. The kinetics is formulated as a tensorial variant of the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation. The tensor form is required since the kinetic and crystallographic evolution of the microstructure is described in terms of a limited set of growing (recrystallizing) and swept (deformed) texture components. The number of components required defines the order of the tensor since the kinetic coupling occurs between all recrystallizing and all deformed components. The new method is particularly developed for the fast and physically-based process simulation of recrystallization textures with respect to processing. The present paper introduces the method and applies it to the primary recrystallization of low carbon steels.


Sign in / Sign up

Export Citation Format

Share Document