scholarly journals Regenerative instabilities of spring-guided circular saws

Procedia CIRP ◽  
2021 ◽  
Vol 101 ◽  
pp. 142-145
Author(s):  
Sunny Singhania ◽  
Mohit Law
Keyword(s):  
Alloy Digest ◽  
1981 ◽  
Vol 30 (9) ◽  

Abstract GUTERL M-2 is a molybdenum-tungsten type of high-speed steel with fairly good resistance to decarburization. It is a general-purpose high-speed steel and it provides excellent resistance to abrasion and shock. It is used widely for cutting tools. Among its many applications are hack saws, circular saws, lathe tools, gear cutters, planer tools and wood knives. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, machining, and joining. Filing Code: TS-387. Producer or source: Guterl Special Steel Corporation.


2011 ◽  
Vol 228-229 ◽  
pp. 484-489
Author(s):  
Xiao Ling Wang ◽  
Zhong Jun Yin ◽  
Chao Zhang

Thinner saw blades cannot resist large lateral cutting forces due to their lower stiffness. In this paper we propose a composite reinforcement method to improve the mechanical properties of circular saw blades. We analyze and simulate the stress and strain fields of our proposed reinforced circular saws by Finite element method. Our analytical results contain not only influences of reinforcing parameters but also loading conditions on the lateral stiffness and the natural frequency of composite saw blades. Here the reinforcing parameters include: 1) the reinforcement location on circular saw blades, 2) the volume fraction of the reinforcements, 3) the number of the reinforcements; and loading conditions include: 1) the cutting force, 2) the rotational speed. Our composite reinforcement model and simulation results can contribute to a better design of circular saw blades.


1985 ◽  
Vol 107 (2) ◽  
pp. 196-202
Author(s):  
M. C. Leu ◽  
M. Jirapongphan

Two types of flow-induced vibrations in idling circular saws, random vibration and resonant vibration, were modeled and analyzed. The excitation source, which is the flow pressure fluctuations, was modeled as discrete forces acting at the saw teeth. The response was assumed to be uncoupled from the excitation in the random vibration analysis but coupled with the excitation in the resonant vibration analysis. The random vibration was solved in terms of statistical rms amplitudes and the resonant vibration as a time function. The analytical results captured many characteristics of vibration phenomena observed in idling saw experiments.


2017 ◽  
Vol 37 (7) ◽  
pp. 615-616 ◽  
Author(s):  
A. N. Chukarin ◽  
A. E. Litvinov ◽  
V. V. Novikov
Keyword(s):  

Author(s):  
J. Poirier ◽  
P. Radziszewski

The natural frequencies of circular saws limit the operating speeds of the saws. Current industry methods of increasing natural frequency include pretensioning, where plastic deformation is induced into the saw. To better model the saw, the finite element model is compared to current software for steel saws; C-SAW, a software program that calculates frequencies for stiffened circular saws. Using C-SAW and the finite element method the results are compared and the finite element method is validated for steel saws.


Author(s):  
Ján Kováč ◽  
Milan Mikleš

Nowadays, the wood cutting process looks like a technological scheme consisting of several connected and relatively inseparable parts. The crosscutting wood is the most widespread in the process of fo­rest exploitation; it is used at tree exploitation, shortening stems and assortment production. The article deals with the influence of the cutting edge geometry of circular saws on the torque and also on the cutting performance at the crosscutting wood therefore there is the influence on the whole cutting process. In the article there is described detailed measurement procedure, used measuring devices and the process of results analysis. Knowledge of wood crosscutting process and choice of suitable cutting conditions and cutting tools will contribute to decrease production costs and energy saving.


Sign in / Sign up

Export Citation Format

Share Document