scholarly journals A Survey to Analyse Routing Algorithms for Opportunistic Network

2020 ◽  
Vol 171 ◽  
pp. 2501-2511
Author(s):  
Soamdeep Singha ◽  
Biswapati Jana ◽  
Sharmistha Halder Jana ◽  
Niranjan Kumar Mandal
Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3315
Author(s):  
Aida-Ștefania Manole ◽  
Radu-Ioan Ciobanu ◽  
Ciprian Dobre ◽  
Raluca Purnichescu-Purtan

Constant Internet connectivity has become a necessity in our lives. Hence, music festival organizers allocate part of their budget for temporary Wi-Fi equipment in order to sustain the high network traffic generated in such a small geographical area, but this naturally leads to high costs that need to be decreased. Thus, in this paper, we propose a solution that can help offload some of that traffic to an opportunistic network created with the attendees’ smartphones, therefore minimizing the costs of the temporary network infrastructure. Using a music festival-based mobility model that we propose and analyze, we introduce two routing algorithms which can enable end-to-end message delivery between participants. The key factors for high performance are social metrics and limiting the number of message copies at any given time. We show that the proposed solutions are able to offer high delivery rates and low delivery delays for various scenarios at a music festival.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Gang Xu ◽  
Xinyue Wang ◽  
Na Zhang ◽  
Zhifei Wang ◽  
Lin Yu ◽  
...  

Opportunistic networks are becoming more and more important in the Internet of Things. The opportunistic network routing algorithm is a very important algorithm, especially based on the historical encounters of the nodes. Such an algorithm can improve message delivery quality in scenarios where nodes meet regularly. At present, many kinds of opportunistic network routing algorithms based on historical message have been provided. According to the encounter information of the nodes in the last time slice, the routing algorithms predict probability that nodes will meet in the subsequent time slice. However, if opportunistic network is constructed in remote rural and pastoral areas with few nodes, there are few encounters in the network. Then, due to the inability to obtain sufficient encounter information, the existing routing algorithms cannot accurately predict whether there are encounters between nodes in subsequent time slices. For the purpose of improving the accuracy in the environment of sparse opportunistic networks, a prediction model based on nodes intimacy is proposed. And opportunistic network routing algorithm is designed. The experimental results show that the ONBTM model effectively improves the delivery quality of messages in sparse opportunistic networks and reduces network resources consumed during message delivery.


2019 ◽  
Vol 7 (4) ◽  
pp. 644-646
Author(s):  
O.Koteswara Rao ◽  
Y K Sundara Krishna ◽  
G K Mohan Devarakonda

2021 ◽  
Author(s):  
Khanh-Van Nguyen ◽  
Chi-Hieu Nguyen ◽  
Phi Le Nguyen ◽  
Tien Van Do ◽  
Imrich Chlamtac

AbstractA quest for geographic routing schemes of wireless sensor networks when sensor nodes are deployed in areas with obstacles has resulted in numerous ingenious proposals and techniques. However, there is a lack of solutions for complicated cases wherein the source or the sink nodes are located close to a specific hole, especially in cavern-like regions of large complex-shaped holes. In this paper, we propose a geographic routing scheme to deal with the existence of complicated-shape holes in an effective manner. Our proposed routing scheme achieves routes around holes with the (1+$$\epsilon$$ ϵ )-stretch. Experimental results show that our routing scheme yields the highest load balancing and the most extended network lifetime compared to other well-known routing algorithms as well.


Author(s):  
Behnam Khosravi ◽  
Behrooz Khosravi ◽  
Bahman Khosravi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document