scholarly journals Effects of Air Intake Pressure to the Fuel Economy and Exhaust Emissions on a Small SI Engine

2013 ◽  
Vol 68 ◽  
pp. 278-284 ◽  
Author(s):  
Nik Rosli Abdullah ◽  
Nafis Syabil Shahruddin ◽  
Aman Mohd. Ihsan Mamat ◽  
Salmiah Kasolang ◽  
Aminuddin Zulkifli ◽  
...  
2014 ◽  
Vol 6 ◽  
pp. 949-958 ◽  
Author(s):  
Nik Rosli Abdullah ◽  
Nafis Syabil Shahruddin ◽  
Rizalman Mamat ◽  
Aman Mohd. Ihsan Mamat ◽  
Aminuddin Zulkifli

2015 ◽  
Vol 773-774 ◽  
pp. 430-434
Author(s):  
Azizul Mokhtar ◽  
Nazrul Atan ◽  
Najib Rahman ◽  
Amir Khalid

Bio-additive is biodegradable and produces less air pollution thus significant for replacing the limited fossil fuels and reducing threats to the environment from exhaust emissions and global warming. Instead, the bio-additives can remarkably improve the fuel economy SI engine while operating on all kinds of fuel. Some of the bio-additive has the ability to reduce the total CO2 emission from internal petrol engine. This review paper focuses to determine a new approach in potential of bio-additives blends operating with bio-petrol on performance and emissions of spark ignition engine. It is shown that the variant in bio-additives blending ratio and engine operational condition are reduced engine-out emissions and increased efficiency. It seems that the bio-additives can increase the maximum cylinder combustion pressure, improve exhaust emissions and largely reduce the friction coefficient. The review concludes that the additives usage in bio-petrol is inseparable for the better engine performance and emission control and further research is needed to develop bio-petrol specific additives.


Author(s):  
Myoungjin Kim ◽  
Sihun Lee ◽  
Wootae Kim

In-cylinder flows such as tumble and swirl have an important role on the engine combustion efficiencies and emission formations. In particular, the tumble flow, which is dominant in-cylinder flow in current high performance gasoline engines, has an important effect on the fuel consumptions and exhaust emissions under part load conditions. Therefore, it is important to know the effect of the tumble ratio on the part load performance and optimize the tumble ratio of a gasoline engine for better fuel economy and exhaust emissions. First step in optimizing a tumble flow is to measure a tumble ratio accurately. In this research the tumble flow was measured, compared and correlated using three different measurement methods: steady flow rig, 2-Dimensional PIV, and 3-Dimensional PTV. Engine dynamometer test was performed to find out the effect of the tumble ratio on the part load performance. Dynamometer test results of high tumble ratio engine showed faster combustion speed, retarded MBT timing, higher exhaust emissions, and a better lean burn combustion stability. Lean limit of the baseline engine was expanded from A/F=18:1 to A/F=21:1 by increasing a tumble ratio using MTV.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 36
Author(s):  
Mikael Stenfelt ◽  
Konstantinos Kyprianidis

In gas turbines used for airplane propulsion, the number of sensors are kept at a minimum for accurate control and safe operation. Additionally, when data are communicated between the airplane main computer and the various subsystems, different systems may have different constraints and requirements regarding what data transmit. Early in the design process, these parameters are relatively easy to change, compared to a mature product. If the gas turbine diagnostic system is not considered early in the design process, it may lead to diagnostic functions having to operate with reduced amount of data. In this paper, a scenario where the diagnostic function cannot obtain airplane installation effects is considered. The installation effects in question is air intake pressure loss (pressure recovery), bleed flow and shaft power extraction. A framework is presented where the unknown installation effects are estimated based on available data through surrogate models, which is incorporated into the diagnostic framework. The method has been evaluated for a low-bypass turbofan with two different sensor suites. It has also been evaluated for two different diagnostic schemes, both determined and underdetermined. Results show that, compared to assuming a best-guess constant-bleed and shaft power, the proposed method reduce the RMS in health parameter estimation from 26% up to 80% for the selected health parameters. At the same time, the proposed method show the same degradation pattern as if the installation effects were known.


2008 ◽  
Vol 1 (1) ◽  
pp. 873-887 ◽  
Author(s):  
Kenji Morita ◽  
Kazuki Shimamura ◽  
Seiichi Yamaguchi ◽  
Keiji Furumachi ◽  
Nobuya Osaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document