scholarly journals Landslide Tsunami: Physical Modeling for the Implementation of Tsunami Early Warning Systems in the Mediterranean Sea

2014 ◽  
Vol 70 ◽  
pp. 429-438 ◽  
Author(s):  
P. De Girolamo ◽  
M. Di Risio ◽  
A. Romano ◽  
M.G. Molfetta
2021 ◽  
Author(s):  
F. Estrada ◽  
J. M. González-Vida ◽  
J. A. Peláez ◽  
J. Galindo-Zaldívar ◽  
S. Ortega ◽  
...  

Abstract Tsunamis are triggered by sudden seafloor displacements, and usually originate from seismic activity at faults. Nevertheless, strike-slip faults are usually disregarded as major triggers, as they are thought to be capable of generating only moderate seafloor deformation; accordingly, the tsunamigenic potential of the vertical throw at the tips of strike-slip faults is not thought to be significant. We found the active dextral NW-SE Averroes Fault in the central Alboran Sea (westernmost Mediterranean) has a historical vertical throw of up to 5.4 m at its northwestern tip corresponding to an earthquake of Mw 7.0. We modelled the tsunamigenic potential of this seafloor deformation by Tsunami-HySEA software using the Coulomb 3.3 code. Waves propagating on two main branches reach highly populated sectors of the Iberian coast with maximum arrival heights of 6 m within 21 and 35 min, which is too quick for current early-warning systems to operate successfully. These findings suggest that the tsunamigenic potential of strike-slip faults is more important than previously thought, and justify the re-evaluation of tsunami early-warning systems worldwide.


2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Anna Dzvonkovskaya ◽  
Leif Petersen ◽  
Thomas Helzel ◽  
Matthias Kniephoff

2013 ◽  
Vol 3 (1) ◽  
pp. 4 ◽  
Author(s):  
Gerassimos A. Papadopoulos ◽  
Anna Fokaefs

The new European project <em>Near-field Tsunami Early Warning and Emergency Planning in the Mediterranean Sea</em> (NEARTOWARN) faces the need to develop operational tsunami early warning systems in near-field (local) conditions where the travel time of the first tsunami wave is very short, that is less than 30 min, which is a typical case in the North East Atlantic and the Mediterranean Sea region but also elsewhere around the globe. The operational condition that should be fulfilled is that the time of tsunami detection, plus the time of warning transmitting, plus the time of evacuation should not exceed the travel time of the first tsunami wave from its source to the closest evacuation zone. To this goal the time to detect of the causative earthquake should be compressed at the very minimum. In this context the core of the proposed system is a network of seismic early warning devices, which activate and send alert in a few seconds after the generation of a near-field earthquake, when a seismic ground motion exceeding a prescribed threshold is detected. Then civil protection mobilizes to manage the earthquake crisis but also to detect and manage a possible tsunami through a geographical risk management system. For the tsunami detection the system is supported by tide-gauges of radar type, a database of presimulated tsunami scenarios, and a local tsunami decision matrix. The island of Rhodes in the eastern termination of the Hellenic Arc and Trench has been selected for a pilot and operational development of the local tsunami warning system given that the island is a highly popular tourist destination, historically it was hit by large tsunamigenic earthquakes and was recently the master test-site for the pan-European FP6 tsunami research project <em>Tsunami Risk ANd Strategies For the European Region</em> (TRANSFER).


Sign in / Sign up

Export Citation Format

Share Document