scholarly journals The Influence of Urban Geometry on Thermal Comfort and Energy Consumption in Residential Building of Hot Arid Climate, Assiut, Egypt

2015 ◽  
Vol 121 ◽  
pp. 158-166 ◽  
Author(s):  
Amr Sayed Hassan Abdallah
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Seyedeh Samaneh Golzan ◽  
Mina Pouyanmehr ◽  
Hassan Sadeghi Naeini

PurposeThe modular dynamic façade (MDF) concept could be an approach in a comfort-centric design through proper integration with energy-efficient buildings. This study focuses on obtaining and/or calculating an efficient angle of the MDF, which would lead to the optimum performance in daylight availability and energy consumption in a single south-faced official space located in the hot-arid climate of Yazd, Iran.Design/methodology/approachThe methodology consists of three fundamental parts: (1) based on previous related studies, a diamond-based dynamic skin façade was applied to a south-faced office building in a hot-arid climate; (2) the daylighting and energy performance of the model were simulated annually; and (3) the data obtained from the simulation were compared to reach the optimum angle of the MDF.FindingsThe results showed that when the angle of the MDF openings was set at 30°, it could decrease energy consumption by 41.32% annually, while daylight simulation pointed that the space experienced the minimum possible glare at this angle. Therefore, the angle of 30° was established as the optimum angle, which could be the basis for future investment in responsive building envelopes.Originality/valueThis angular study simultaneously assesses the daylight availability, visual comfort and energy consumption on a MDF in a hot-arid climate.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3348 ◽  
Author(s):  
Jaesung Park ◽  
Taeyeon Kim ◽  
Chul-sung Lee

In Kuwait, where the government subsidizes approximately 95% of residential electricity bills, most of the country’s energy consumption is for residential use. In particular, air-conditioning (AC) systems for cooling, which are used throughout the year, are responsible for residential electric energy consumption. This study aimed to reduce the amount of energy consumed for cooling purposes by developing a thermal comfort-based controller. Our study commenced by using a simulation model to investigate the possibility of energy reduction when using the predicted mean vote (PMV) for optimal control. The result showed that control optimization would enable the cooling energy consumption to be reduced by 33.5%. The influence of six variables on cooling energy consumption was then analyzed to develop a thermal comfort-based controller. The analysis results showed that the indoor air temperature was the most influential factor, followed by the mean radiant temperature, the metabolic rate, and indoor air velocity. The thermal comfort-based controller-version 1 (TCC-V1) was developed based on the analysis results and experimentally evaluated to determine the extent to which the use of the controller would affect the energy consumed for cooling. The experiments showed that the implementation of TCC-V1 control made it possible to reduce the electric energy consumption by 39.5% on a summer representative day. The results of this study indicate that it is possible to improve indoor thermal comfort while saving energy by using the thermal comfort-based controller in residential buildings in Kuwait.


2017 ◽  
Vol 10 (5) ◽  
pp. 1189-1199 ◽  
Author(s):  
Hicham Lakrafli ◽  
Soufiane Tahiri ◽  
Abderrahmane Albizane ◽  
Souad El Houssaini ◽  
Mohamed Bouhria

Author(s):  
Ayesha Al Qubaisi ◽  
Ali Al Alili

The design, construction, and operation of highly efficient residential buildings in hot and humid climates represent a unique challenge for architects, contractors, and building owners. In this paper, a case study on the performance of a residential building located in hot and humid location is presented. The building is a single-family house, which is modeled as a multi-zone building. The transient systems simulation program (TRNSYS) is used to simulate the building under Abu Dhabi’s typical meteorological year conditions. The results are presented in terms of the annual energy consumption and the indoor thermal comfort. The Predicted Mean Vote (PMV) is used to model the thermal comfort. In addition, the results of applying local building codes, Estidama, and international building codes, ASHRAE 90.2 and LEED, on the building’s performance are compared. The results will help in finding the effectiveness of these building standards in reducing the energy consumption of residential building in hot and humid regions.


Sign in / Sign up

Export Citation Format

Share Document