hot arid climate
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 53)

H-INDEX

13
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Tristan Cumer ◽  
Ana Paula Machado ◽  
Felipe Siverio ◽  
Sidi Imad Cherkaoui ◽  
Inês Roque ◽  
...  

Islands, and the particular organisms that populate them, have long fascinated biologists. Due to their isolation, islands offer unique opportunities to study the effect of neutral and adaptive mechanisms in determining genomic and phenotypical divergence. In the Canary Islands, an archipelago rich in endemics, the barn owl (Tyto alba) is thought to have diverged into a subspecies (T. a. gracilirostris) on the eastern islands, Fuerteventura and Lanzarote. Taking advantage of 40 whole-genomes and modern population genomics tools, we provide the first look at the origin and genetic makeup of barn owls of this archipelago. We show that the Canaries hold diverse, long-standing and monophyletic populations with a neat distinction of gene pools from the different islands. Using new method, less sensitive to structure than classical FST, to detect regions involved in local adaptation to the insular environment, we identified a haplotype-like region likely under positive selection in all Canaries individuals. Genes in this region suggest morphological adaptations to insularity. In the eastern islands, where the subspecies T. a. gracilirostris is present, genomic traces of selection pinpoint signs of locally adapted body proportions and blood pressure, consistent with the smaller size of this population living in a hot arid climate. In turn, genomic regions under selection in the western barn owls from Tenerife showed an enrichment in genes linked to hypoxia, a potential response to inhabiting a small island with a marked altitudinal gradient. Our results illustrate the interplay of neutral and adaptive forces in shaping divergence and early onset speciation.


2021 ◽  
Vol 13 (22) ◽  
pp. 12676
Author(s):  
Mahmoud Makkiabadi ◽  
Siamak Hoseinzadeh ◽  
Meysam Majidi Nezhad ◽  
Ali Sohani ◽  
Daniele Groppi

By taking advantage of the obtained experimental data, the impact of employing concentrating solar collectors, using an electric heater, and changing the water height in the basin on the performance of a hybrid solar still system was investigated. Eight different operating modes for the system were studied, while the daily freshwater production in addition to the cost per liter (CPL) was considered as the performance criteria. According to the results, the best height of water in the basin is 10 mm. It is the lowest examined height. Moreover, it was found that using the hybrid system with both electric heater and concentrating solar heater brings considerable improvements compared to the other investigated operating modes. For the climatic condition of Sirjan, Iran, which is where the experiments were performed, and water height in the basin of 10 mm, using the hybrid system in the active mode results in 8178 mL/m2 of fresh water production, and a CPL of $0.04270 per liter.


2021 ◽  
Vol 7 ◽  
pp. 550-558
Author(s):  
Micheal A. William ◽  
María José Suárez-López ◽  
Silvia Soutullo ◽  
Ahmed A. Hanafy

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Seyedeh Samaneh Golzan ◽  
Mina Pouyanmehr ◽  
Hassan Sadeghi Naeini

PurposeThe modular dynamic façade (MDF) concept could be an approach in a comfort-centric design through proper integration with energy-efficient buildings. This study focuses on obtaining and/or calculating an efficient angle of the MDF, which would lead to the optimum performance in daylight availability and energy consumption in a single south-faced official space located in the hot-arid climate of Yazd, Iran.Design/methodology/approachThe methodology consists of three fundamental parts: (1) based on previous related studies, a diamond-based dynamic skin façade was applied to a south-faced office building in a hot-arid climate; (2) the daylighting and energy performance of the model were simulated annually; and (3) the data obtained from the simulation were compared to reach the optimum angle of the MDF.FindingsThe results showed that when the angle of the MDF openings was set at 30°, it could decrease energy consumption by 41.32% annually, while daylight simulation pointed that the space experienced the minimum possible glare at this angle. Therefore, the angle of 30° was established as the optimum angle, which could be the basis for future investment in responsive building envelopes.Originality/valueThis angular study simultaneously assesses the daylight availability, visual comfort and energy consumption on a MDF in a hot-arid climate.


Sign in / Sign up

Export Citation Format

Share Document