urban canyon
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 45)

H-INDEX

27
(FIVE YEARS 5)

2022 ◽  
Vol 6 ◽  
Author(s):  
Miguel Angel Alban Alcívar ◽  
Jorge Lider Macias Ramos ◽  
Danny Emir Alcivar Velez

Postmodern architecture is responsible for carrying out the building distributions of the urban canyon of cities; For this, it provides the tools required to adjust the territory to social, economic, and environmental needs. One of these tools is aimed at the applicability of construction strategies such as the correct solar orientation. The present investigation of an experimental nature, carried out in the Crucita parish of Ecuador, evaluates the thermal temperatures inside two houses in their current state, assessing it in two prototypes with one water and two waters on the four cardinal orientations: with four different angles of inclination of the cover. Where it was determined that the thermal comfort inside that provides the least increase in temperature is for the house with a roof facing west, with an angle of inclination greater than 20°.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 27
Author(s):  
Lidiane de Oliveira Lemos ◽  
Antonio Carlos Oscar Júnior ◽  
Francisco Mendonça

This study aims to evaluate the thermal field of the central business district (CBD) of Rio de Janeiro during summer from land surface temperature (LST) and the thermal characteristics of the urban canopy layer (UCL) of the urban canyon in Avenida Rio Branco. In order to conduct this evaluation, two methods were employed: (1) TIRS Landsat-8 sensor for data selection and processing (latest generation, 2011–2020); (2) a field survey using nine sampling points—seven along two mobile transects, one fixed point, and one vertical measurement point, which required the use of an RPA (remotely piloted aircraft). Three categories of analysis were established for the field survey based on the prevailing synoptic situations: stability, instability, and post-instability. The CBD is characterized by extensive areas with surface heat islands, in which temperatures were higher than 38.9 °C; the areas with milder LSTs were Campo do Santana, Avenida Rio Branco, and one of the mixed-use zones (Praça Mauá). With respect to Rio Branco Avenue, the LST niches of lowest elevation were derived through building shadowing; however, due to the nature of the data, the orbital data diverged from the observation data of the 10 field-study days. In situ data revealed that the characteristics urban morphology of Avenida Rio Branco, by contrast with the LST result, is susceptible to the formation of atmospheric heat islands, presenting heat islands of very strong magnitude (over 6.1 °C) in atmospheric stability, strong magnitude (4.1–6.0 °C) in atmospheric instability, and moderate magnitude (2.1–4.0 °C) in post-atmospheric instability. Despite the synoptic situation, thermal cores were concentrated at 1 p.m. The intersection between Avenida Rio Branco, Rua do Ouvidor, and Praça Mauá stored most of the solar energy received during the day due to the greater sky obstruction caused by the verticalization. Finally, vertical analysis demonstrated the formation of a thermal inversion on the night of the highest mean air temperature (29.5 °C), probably due to the roughness and number of buildings in the urban canyon.


2021 ◽  
Vol 183 ◽  
pp. 108291
Author(s):  
Fotis Georgiou ◽  
Maarten Hornikx ◽  
Armin Kohlrausch

Author(s):  
Lidiane de Oliveira Lemos ◽  
Antonio Carlos Oscar-Júnior ◽  
Francisco Mendonça

This study aims to evaluate the land surface temperature (LST) and the thermal characteristics of the Urban Canopy Layer (UCL) of the urban canyon in Avenida Rio Branco in the Central Business District (CBD) of Rio de Janeiro during summer. In order to conduct this evaluation, two methods were employed: 1) TIRS Landsat-8 sensor for data selection and processing (latest generation, 2011-2020); ; 2) field survey using nine sampling points — seven along two mobile transects, one fixed point, and one vertical measurement point, which required the use of a RPA (Remotely Piloted Aircraft). Three categories of analysis were established for the field survey based on the prevailing synoptic situations: stability, instability, and post-instability. The CBD is characterized by extensive areas with surface heat islands, in which temperatures were higher than 38.9°C; the areas with milder LSTs were Campo do Santana, Avenida Rio Branco, and one of the Mixed-Use Zones (Praça Mauá). With respect to Rio Branco Avenue, the LST niches of lowest elevation were derived through building shadowing; however, the orbital data diverged from the observation data of the ten field-study days. In situ data revealed that the characteristics urban morphology of Avenida Rio Branco is susceptible to the formation of heat islands, presenting heat islands of very strong magnitude (over 6.1°C) in atmospheric stability, strong magnitude (4.1-6.0°C) in atmospheric instability, and moderate magnitude (2.1°C-4.0°C) in post-atmospheric instability. Despite the synoptic situation, thermal cores were concentrated at 1 pm. The intersection between Avenida Rio Branco, Rua do Ouvidor, and Praça Mauá stored most of the solar energy received during the day due to the greater sky obstruction caused by the verticalization. Finally, vertical analysis demonstrated the formation of a thermal inversion on the night of the highest mean air temperature (29.5°C), probably, due to the roughness and number of buildings in the urban canyon.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012060
Author(s):  
Xin Xiong ◽  
Shumin Liu

Abstract Aiming at the problem of poor positioning accuracy of GNSS for urban canyon environment, this paper proposes a TDOA/AOA combined positioning technology based on 5G.Firstly, the AOA estimation algorithm based on conventional beam forming is compared with that based on MUSIC algorithm. Then, the weighted matrix is smoothed forward and backward.Finally, according to the measurement data of AOA and TDOA, Chan and Taylor combined localization algorithm is used to obtain the estimated location of the user.


Author(s):  
Xinyu Zhao ◽  
Pan Tang ◽  
Qidu Song ◽  
Tao Jiang ◽  
Yujie Wang ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4969
Author(s):  
Luca Salvadori ◽  
Annalisa Di Bernardino ◽  
Giorgio Querzoli ◽  
Simone Ferrari

The energy transition to more sustainable forms is currently ongoing worldwide, because of the environmental impacts produced by the non-renewable energy sources employed in the last decades. Among the main alternatives, wind plays a key role and, nowadays, innovative instruments, such as small-scale turbines allow for installation of wind turbines in urban areas. Their energy potential assessment requires high-accuracy simulations of the turbulent flows in the urban canopy layer, which, in turn, require detailed information about the geometrical properties of the basic element to classify urban surfaces, i.e., the urban canyon, often not available. In this work, we propose a novel automatic method, based on Voronoi graph, to univocally identify urban canyons and to extract their geometrical parameters from online available GIS (Geographic Information System) data, and test it on four European cities that differ in size, story and location. Results show the capability of the method to identify the single urban canyon and to properly extract its geometrical parameters, which tend to assume similar values for the largest cities. Moreover, we first attempt to propose and test some curves to generally describe the data probability distribution, which may be useful for turbulence simulations for urban wind energy assessment and planning. The best results are found for the canyon aspect ratio.


Author(s):  
Lidiane de Oliveira Lemos ◽  
Antonio Carlos Oscar Júnior ◽  
Francisco Mendonça

This study aims to evaluate the land surface temperature (LST) and the thermal characteristics of the Urban Canopy Layer (UCL) of the urban canyon in Avenida Rio Branco in the Central Business District (CBD) of Rio de Janeiro during summer. In order to conduct this evaluation, two methods were employed: 1) summer LST estimation from the last decade (2011-2020); 2) field survey using nine sampling points — seven along two mobile transects, one fixed point, and one vertical measurement point, which required the use of a RPA (Remotely Piloted Aircraft). Three categories of analysis were established based on the prevailing synoptic situations: stability, instability, and post-instability. The CBD showed extensive areas with surface heat islands, in which temperatures were higher than 38.9°C; the areas with milder LSTs were Campo do Santana, Avenida Rio Branco, and one of the Mixed-Use Zones (Praça Mauá). The shadows of the buildings gave rise to niches of lower LSTs on Avenida Rio Branco; however, the satellite data and the data collected during the ten days of field experiments diverged. In situ data revealed that the urban morphology of Avenida Rio Branco is susceptible to the formation of heat islands, presenting heat islands of very strong magnitude (over 6.1°C) in atmospheric stability, strong magnitude (4.1-6.0°C) in atmospheric instability, and moderate magnitude (2.1°C-4.0°C) in post-atmospheric instability. Despite the synoptic situation, thermal cores were concentrated at 1 pm. The intersection between Avenida Rio Branco, Rua do Ouvidor, and Praça Mauá stored most of the solar energy received during the day. Finally, vertical analysis demonstrated the formation of a thermal inversion on the night of the highest mean air temperature (29.5°C), probably, due to the roughness and number of buildings in the urban canyon.


Sign in / Sign up

Export Citation Format

Share Document