scholarly journals Development of Thermal Comfort-Based Controller and Potential Reduction of the Cooling Energy Consumption of a Residential Building in Kuwait

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3348 ◽  
Author(s):  
Jaesung Park ◽  
Taeyeon Kim ◽  
Chul-sung Lee

In Kuwait, where the government subsidizes approximately 95% of residential electricity bills, most of the country’s energy consumption is for residential use. In particular, air-conditioning (AC) systems for cooling, which are used throughout the year, are responsible for residential electric energy consumption. This study aimed to reduce the amount of energy consumed for cooling purposes by developing a thermal comfort-based controller. Our study commenced by using a simulation model to investigate the possibility of energy reduction when using the predicted mean vote (PMV) for optimal control. The result showed that control optimization would enable the cooling energy consumption to be reduced by 33.5%. The influence of six variables on cooling energy consumption was then analyzed to develop a thermal comfort-based controller. The analysis results showed that the indoor air temperature was the most influential factor, followed by the mean radiant temperature, the metabolic rate, and indoor air velocity. The thermal comfort-based controller-version 1 (TCC-V1) was developed based on the analysis results and experimentally evaluated to determine the extent to which the use of the controller would affect the energy consumed for cooling. The experiments showed that the implementation of TCC-V1 control made it possible to reduce the electric energy consumption by 39.5% on a summer representative day. The results of this study indicate that it is possible to improve indoor thermal comfort while saving energy by using the thermal comfort-based controller in residential buildings in Kuwait.

Author(s):  
Ayesha Al Qubaisi ◽  
Ali Al Alili

The design, construction, and operation of highly efficient residential buildings in hot and humid climates represent a unique challenge for architects, contractors, and building owners. In this paper, a case study on the performance of a residential building located in hot and humid location is presented. The building is a single-family house, which is modeled as a multi-zone building. The transient systems simulation program (TRNSYS) is used to simulate the building under Abu Dhabi’s typical meteorological year conditions. The results are presented in terms of the annual energy consumption and the indoor thermal comfort. The Predicted Mean Vote (PMV) is used to model the thermal comfort. In addition, the results of applying local building codes, Estidama, and international building codes, ASHRAE 90.2 and LEED, on the building’s performance are compared. The results will help in finding the effectiveness of these building standards in reducing the energy consumption of residential building in hot and humid regions.


Residential buildings at coastal zone of Egypt face a great shortage in ventilation and thermal comfort, although it has a good orientation to the north. The research focused on Marsa Matrouh city because it is a poor community that has the privilege of sea view. So the research goal is to apply passive natural techniques to apply thermal comfort in this region to decrease the high rise temperature, the IPCC reports stated that there will be high rise temperature for this region as a results of climate change scenarios, for this reason the research aimed to upgrade the existed residential building to cope with this expected high temperature in natural passive way, also it is a good sample for implementing national architecture identity to achieve sustainability by using wooden shatter, wind capture and double glazing. In this research we proved that the optimum affordable natural ventilation technique is the using of double glassing and wooden overhang above each window, this suggested system allowed the air flow to be sucked in order to reduce internal temperature and energy consumption inside any residential buildings. Also the research verified the efficiency of this system by using soft computing technique (Design builder) for measuring the quantities of air flow, solar energy, carbon dioxide emissions, temperature and energy consumption. We aimed to optimize the suggested system to create a new methodology for thermal comfort at coastal zones to solve the high rise temperature issue.


2019 ◽  
Vol 23 (5 Part B) ◽  
pp. 2951-2960 ◽  
Author(s):  
Ali Almarzouq ◽  
Ahmad Sakhrieh

The building envelope is the most affecting part in the energy interaction between the buildings and the surrounding. Proper design of the envelope components not only can save the required energy for the building but also can improve the thermal comfort of its occupants. In this research, energy modelling and simulation for a residential building in Amman, Jordan is performed to investigate the effects of glazing design and infiltration rate on energy consumption and thermal comfort. Different design alternatives have been investigated to find the best alternative design to reduce energy use and improve indoor environment. The results showed that replacing single glazing window with double glazing window argon-filled with low emissivity coating can save the consumed energy by 24.7% while degrade the thermal comfort by 1%. Reducing the infiltration rate by 50% can save 19.4% of the energy consumed and improves the thermal comfort by 10%.


2012 ◽  
Vol 7 (3) ◽  
pp. 23-32 ◽  
Author(s):  
Miloslav Bagoňa ◽  
Dušan Katunský ◽  
Martin Lopušniak ◽  
Marián Vertaľ

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 405
Author(s):  
Anam Nawaz Khan ◽  
Naeem Iqbal ◽  
Rashid Ahmad ◽  
Do-Hyeun Kim

With the development of modern power systems (smart grid), energy consumption prediction becomes an essential aspect of resource planning and operations. In the last few decades, industrial and commercial buildings have thoroughly been investigated for consumption patterns. However, due to the unavailability of data, the residential buildings could not get much attention. During the last few years, many solutions have been devised for predicting electric consumption; however, it remains a challenging task due to the dynamic nature of residential consumption patterns. Therefore, a more robust solution is required to improve the model performance and achieve a better prediction accuracy. This paper presents an ensemble approach based on learning to a statistical model to predict the short-term energy consumption of a multifamily residential building. Our proposed approach utilizes Long Short-Term Memory (LSTM) and Kalman Filter (KF) to build an ensemble prediction model to predict short term energy demands of multifamily residential buildings. The proposed approach uses real energy data acquired from the multifamily residential building, South Korea. Different statistical measures are used, such as mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), and R2 score, to evaluate the performance of the proposed approach and compare it with existing models. The experimental results reveal that the proposed approach predicts accurately and outperforms the existing models. Furthermore, a comparative analysis is performed to evaluate and compare the proposed model with conventional machine learning models. The experimental results show the effectiveness and significance of the proposed approach compared to existing energy prediction models. The proposed approach will support energy management to effectively plan and manage the energy supply and demands of multifamily residential buildings.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3876
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Aiman Albatayneh ◽  
Patrick Dutournie ◽  
...  

Since buildings are one of the major contributors to global warming, efforts should be intensified to make them more energy-efficient, particularly existing buildings. This research intends to analyze the energy savings from a suggested retrofitting program using energy simulation for typical existing residential buildings. For the assessment of the energy retrofitting program using computer simulation, the most commonly utilized residential building types were selected. The energy consumption of those selected residential buildings was assessed, and a baseline for evaluating energy retrofitting was established. Three levels of retrofitting programs were implemented. These levels were ordered by cost, with the first level being the least costly and the third level is the most expensive. The simulation models were created for two different types of buildings in three different climatic zones in Palestine. The findings suggest that water heating, space heating, space cooling, and electric lighting are the highest energy consumers in ordinary houses. Level one measures resulted in a 19–24 percent decrease in energy consumption due to reduced heating and cooling loads. The use of a combination of levels one and two resulted in a decrease of energy consumption for heating, cooling, and lighting by 50–57%. The use of the three levels resulted in a decrease of 71–80% in total energy usage for heating, cooling, lighting, water heating, and air conditioning.


Sign in / Sign up

Export Citation Format

Share Document