scholarly journals Controlled Curved Drilling Technique in the Permeation Grouting Method for Improvement Works of an Airport in Operation

2016 ◽  
Vol 143 ◽  
pp. 539-547 ◽  
Author(s):  
Seiki Takano ◽  
Kentaro Hayashi ◽  
Kouki Zen ◽  
Rouzbeh Rasouli
Author(s):  
H., A. Sinaga

As the new operator of the Mahakam Block started in 2017, Pertamina Hulu Mahakam (PHM) were challenged to ramp up operations in order to combat massive production decline. At the same time, reducing well cost was also a paramount importance to ensure that the economic targets of the wells were achieved following the reduction of well stakes. One of the remaining unsolved enigmas is how to achieve No Wait-on-Cement (NO WOC) on surface diverter section as this will create a lot of rig time saving both on single well and batch operations. The project begins with several different kinds of proposal until the best solutions were identified fulfilling safety, simplicity of operations and acceptable cost and finally were put in place with very satisfying results. The main key principle is conversion wellhead stages following well architecture while there were several modifications of casing hanger, adapter, additional materials & modified procedure. Rig time saving, additional operational gain and a promising new “breakthrough” of drilling technique become a significant impact of the successful effort. Now the method has become a standard in PHM operations and has already been integrated to SDI (Standard Drilling Instruction). The merit of this endless hard work could possibly be gained by other operators as it will create more added values both tangible and intangible.


2019 ◽  
Vol 88 (6) ◽  
pp. 485-488
Author(s):  
Shinji KAWAI ◽  
Takuya NAGAI ◽  
Shigetaka OKANO

2021 ◽  
Vol 287 ◽  
pp. 106096
Author(s):  
Ali Tolooiyan ◽  
Ashley P. Dyson ◽  
Mojtaba Karami ◽  
Tahereh Shaghaghi ◽  
Mohsen Ghadrdan ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1147
Author(s):  
Alessio Danilo Inchingolo ◽  
Angelo Michele Inchingolo ◽  
Ioana Roxana Bordea ◽  
Edit Xhajanka ◽  
Donato Mario Romeo ◽  
...  

Many different osteotomy procedures has been proposed in the literature for dental implant site preparation. The osseodensification is a drilling technique that has been proposed to improve the local bone quality and implant stability in poor density alveolar ridges. This technique determines an expansion of the implant site by increasing the density of the adjacent bone. The aim of the present investigation was to evaluate the effectiveness of the osseodensification technique for implant site preparation through a literature review and meta-analysis. The database electronic research was performed on PubMed (Medline) database for the screening of the scientific papers. A total of 16 articles have been identified suitable for the review and qualitative analysis—11 clinical studies (eight on animals, three on human subjects), four literature reviews, and one case report. The meta-analysis was performed to compare the bone-to-implant contact % (BIC), bone area fraction occupied % (BAFO), and insertion torque of clockwise and counter-clockwise osseodensification procedure in animal studies. The included articles reported a significant increase in the insertion torque of the implants positioned through the osseodensification protocol compared to the conventional drilling technique. Advantages of this new technique are important above all when the patient has a strong missing and/or low quantity of bone tissue. The data collected until the drafting of this paper detect an improvement when the osseodensification has been adopted if compared to the conventional technique. A significant difference in BIC and insertion torque between the clockwise and counter-clockwise osseodensification procedure was reported, with no difference in BAFO measurements between the two approaches. The effectiveness of the present study demonstrated that the osseodensification drilling protocol is a useful technique to obtain increased implant insertion torque and bone to implant contact (BIC) in vivo. Further randomized clinical studies are required to confirm these pieces of evidence in human studies.


Author(s):  
Angela O. Nieckele ◽  
Luis Fernando Figueira da Silva ◽  
Joa˜o Carlos R. Pla´cido

Thermal spallation is a possible drilling technique which consists of using hot supersonic jets as heat source to perforate hard rocks at high rates. This work presents a numerical analysis of a typical spallation drilling configuration, by the finite volume method. The time-averaged conservation equations of mass, momentum and energy are solved to determine the turbulent compressible gas phase flow field. Turbulence is predicted by the classical high Reynolds number κ-ε model, as well as with a low Reynolds number κ-ε model. The influence of the jet Reynolds number is investigated. Special attention is given to the rock surface temperature, since its accurate determination is required to predict spallation rates under field-drilling conditions.


2015 ◽  
Vol 656-657 ◽  
pp. 320-327 ◽  
Author(s):  
Hidetake Tanaka ◽  
Toma Yoshita

CFRP and Titanium alloy, which are known as difficult-to-cut materials have been widely used as structural material in aviation industries. The orbital drilling is one of an effective drilling technique for the industries. However this technique has some disadvantages such as increase of cutting force due to cutting with tool center point, inertial vibration generated by revolution and high installation cost. In order to improve the disadvantages, we have invented a new drilling technique which is called inclined planetary motion milling. The inclined planetary motion milling and the planetary mechanism drilling has two axes of cutting tool rotation axis and revolution axis. Cutting tool rotation axis of the orbital drilling is moved parallel to the revolution axis in eccentric. On the other hand, in the case of the inclined planetary motion milling, eccentric of the cutting tool rotation axis is realized by inclination of a few degrees from the revolution axis. Therefore, the movement of eccentric mechanism can be reduced by comparison with the orbital drilling because inclined angle is smaller than eccentricity of the cutting tool tip. As a result, eccentric mechanism can be downsized and inertial vibration is reduced. In the study, a geometrical cutting model of inclined planetary motion milling was set up. The theoretical surface roughness of the inside of drilled holes by use of two types cutting tool geometry were calculated based on the model. And cutting experiments using the new prototype for CFRP were carried out in order to evaluate the effect on machinability with change of cutting point atmosphere. In addition, optimal cutting condition was derived according to cutting experiments for titanium alloys utilizing the orthogonal array.


2021 ◽  
Vol 10 (7) ◽  
pp. e1829-e1837
Author(s):  
Anell Olivos-Meza ◽  
Miguel Estuardo Rodríguez-Argueta ◽  
Carlos Suarez-Ahedo ◽  
César Alejandro Jiménez-Aroche ◽  
Francisco Javier Pérez-Jiménez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document