scholarly journals Evaporator Heating with Optimum Fluid Temperature Changes

2016 ◽  
Vol 157 ◽  
pp. 29-37 ◽  
Author(s):  
Piotr Dzierwa ◽  
Dawid Taler ◽  
Marcin Trojan ◽  
Jan Taler
2020 ◽  
Vol 26 (1) ◽  
Author(s):  
IONEL OLARU

<p>The heat can have a direct impact on the mechanical elements by creating deformations and by causing the induction of additional stress in them. In designing of the heat exchangers or for the electronic components, the temperature changes for structural analysis as well as structural performance of thermal impact for the entire element must be analyzed. The study from this paper proposes an analysis and a simulation of flow through the convergent-divergent nozzle type to optimize the inlet of warm fluid to have minimum impact on the nozzle walls This analysis will be performed with a computer program specialized in complex analysis of Computational Fluid Dynamics (CFD), which will also take into account the fluid temperature and its influence throughout the system.</p>


2019 ◽  
Vol 128 ◽  
pp. 01025
Author(s):  
Dawid Taler ◽  
Piotr Dzierwa ◽  
Jan Taler

A new approximate method of optimum heating cylindrical pressure elements weakened by openings was proposed. Optimum variations in fluid temperature when heating the pressure component were determined from the condition that the total circumferential stress at the edge of the opening, resulting from the thermal load and pressure is equal to the allowable stress. The allowable stress is determined from the Wöhler fatigue diagram for a given number of start-ups and shutdowns of a power unit from the cold state. Optimum temperature changes are difficult to estimate at the beginning of the heating, usingboth exact analytical and numerical methods. In case of analytical methods, this is due to the very slow convergence of a series for near-zero time in the exact solution. In this paper, the optimum temperature changes of the fluid at the beginning of heating were determined using the heat balance integralmethod (HBIM). This method makes it possible to determine with high accuracy the temperature of the fluid for times close to zero, i.e., at the beginning of the heating process. In the second stage of heating, the optimum fluid temperature was determined on the assumption of a quasi-steady temperature field in the pressure element.


2020 ◽  
Author(s):  
Roshan M Patel ◽  
Pengbo Jiang ◽  
Rajiv Karani ◽  
Tarik Phillips ◽  
Raphael B. Arada ◽  
...  

Author(s):  
Piotr Dzierwa ◽  
Dawid Taler ◽  
Jan Taler ◽  
Marcin Trojan

A method for determining time-optimum fluid temperature changes is presented. In contrast to present standards, two points at the edge of the opening are taken into consideration. The optimum fluid temperature changes are assumed in the form of a simple time function. It is possible to increase the fluid temperature stepwise and then the fluid temperature can be increased with a constant rate at the beginning of the heating process. Due to the stepwise increase in fluid temperature, heating time of a thick-walled component is of the same order as in the case of calculations according to EN 12952-3 European Standard, but the total circumferential stresses on the edge of the hole do not exceed the allowable value.


1968 ◽  
Vol 90 (1) ◽  
pp. 130-134 ◽  
Author(s):  
G. F. Kohlmayr

Locke’s maximum slope method for the reduction of transient heat transfer test data is extended to include arbitrary upstream fluid temperature changes. The analytical solution of the single-blow problem is used to evaluate maximum slopes which are shown to depend, in general, nonmonotonically on the number of transfer units, Ntu. It is shown that there is a critical number of transfer units, (Ntu)crit, such that, for Ntu > (Ntu)crit, the maximum slope method remains applicable. In illustration of the analysis, maximum slopes and maximum slope errors are presented for various upstream temperature changes deviating from the step change.


2012 ◽  
Vol 33 (3) ◽  
pp. 106-116
Author(s):  
Piotr Dzierwa ◽  
Jan Taler

Abstract A method for determining time-optimum medium temperature changes is presented. The heating of the pressure elements will be conducted so that the circumferential stress caused by pressure and fluid temperature variations at the edge of the opening at the point of stress concentration, do not exceed the allowable value. In contrast to present standards, two points at the edge of the opening are taken into consideration. The first point, P1, is located at the cross section and the second, P2, at the longitudinal section of the vessel. It will be shown that the optimum temperature courses should be determined with respect to the total circumferential stress at the point P2, and not, as in the existing standards due to the stress at the point P1. Optimum fluid temperature changes are assumed in the form of simple time functions. For practical reasons the optimum temperature in the ramp form is preferred. It is possible to increase the fluid temperature stepwise at the beginning of the heating process and then increase the fluid temperature with the constant rate. Allowing stepwise fluid temperature increase at the beginning of heating ensures that the heating time of a thick-walled component is shorter than heating time resulting from the calculations according to EN 12952-3 European Standard.


2020 ◽  
Vol 26 (1) ◽  
pp. 41-46
Author(s):  
IONEL OLARU

The heat can have a direct impact on the mechanical elements by creating deformations and by causing the induction of additional stress in them. In designing of the heat exchangers or for the electronic components, the temperature changes for structural analysis as well as structural performance of thermal impact for the entire element must be analyzed. The study from this paper proposes an analysis and a simulation of flow through the convergent-divergent nozzle type to optimize the inlet of warm fluid to have minimum impact on the nozzle walls This analysis will be performed with a computer program specialized in complex analysis of Computational Fluid Dynamics (CFD), which will also take into account the fluid temperature and its influence throughout the system.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Piotr Dzierwa ◽  
Jan Taler

A method for determining time-optimum medium temperature changes is presented. The heating of the pressure elements will be conducted so that the circumferential stress caused by pressure and fluid temperature variations at the edge of the opening at the point of stress concentration does not exceed the allowable value. In contrast to present standards, two points at the edge of the opening are taken into consideration. Optimum fluid temperature changes are assumed in the form of simple time functions. It is possible to increase the fluid temperature stepwise at the beginning of the heating process and then the fluid temperature can be increased with a constant rate.


Author(s):  
Jan Taler ◽  
Piotr Dzierwa ◽  
Dawid Taler

A method for determining time-optimum medium temperature changes is presented. The heating of the pressure elements will be conducted so that the circumferential stress caused by pressure and fluid temperature variations at the edge of the opening at the point of stress concentration, does not exceed the allowable value. In contrast to present standards, two points at the edge of the opening are taken into consideration. The first point P1 is located at the cross section and the second P2 at the longitudinal section of the vessel. It will be shown that the optimum temperature courses should be determined with respect to the total circumferential stress at the point P2, and not, as in the existing standards due to the stress at the point P1. Optimum fluid temperature changes are assumed in the form of simple time functions. For practical reasons the optimum temperature in the ramp form is preferred. It is possible to increase the fluid temperature stepwise at the beginning of the heating process and then the fluid temperature can be increased with a constant rate. By the stepwise increase in fluid temperature heating time of a thick-walled component is shorter than heating time resulting from the calculations according to EN 12952-3 European Standard.


Sign in / Sign up

Export Citation Format

Share Document