scholarly journals Correlation and Numerical Study of Heat Transfer for Single Row Cross-flow Heat Exchangers with Different Fin Thickness

2016 ◽  
Vol 157 ◽  
pp. 177-184 ◽  
Author(s):  
Piotr Wais
2019 ◽  
Vol 113 ◽  
pp. 109220 ◽  
Author(s):  
Chidanand K. Mangrulkar ◽  
Ashwinkumar S. Dhoble ◽  
Sunil Chamoli ◽  
Ashutosh Gupta ◽  
Vipin B. Gawande

Vestnik IGEU ◽  
2019 ◽  
pp. 12-21
Author(s):  
A.I. Khaibullina ◽  
A.R. Khairullin

Shell-and-tube heat exchangers are widely used in different industries. Even a small increase in the efficien-cy of shell-and-tube heat exchangers can lead to significant energy savings. One of the ways to improve the efficiency of shell-and-tube heat exchangers is the use of pulsating flows for the enhancement of heat ex-change. Despite the fact that heat transfer in the tube bundle cross flow in steady-state conditions has been studied quite well, there is limited data on heat transfer in pulsating flow, which means that the problem of finding regularities of heat transfer with pulsating flows in tube bundles is still important. The work employs the incompressible Reynolds averaged Naviere-Stokes (URANS) equations and the continuity equation. Heat transfer is described by the convective heat transfer (Fourier-Kirchhoff) equation. The calculations are performed using Ansys Fluent. A numerical study has been conducted of the effects of forced asymmet-rical pulsating flow on heat exchange in in-line tube bundle cross-flow conditions. In the numerical experi-ment the Reynolds number Re ranged from 1000 to 2000, the relative pulsating amplitude A/D – from 1 to 2, the Strouhal number Sh – from 0,77 to 1,51, the Prandtl number and the duty cycle had fixed values: Pr = 7,2,  = 0,25. The relative transverse and longitudinal pitch was s1,2/D = 1,3. It has been found that pulsating flows lead to the enhancement of heat transfer in the whole range of the studied operating parameters. An increase in A/D and Sh leads to bigger Nusselt number Nu. An increase in the Re number leads to a de-crease in the Nu ratio in pulsating and steady flow conditions. The general correlation obtained based on the numerical study results can be used to predict heat transfer in a pulsating flow in the range of the studied geometric and operating parameters. More research is needed to predict heat transfer in a wider range of operating parameters and with other tube bundle configurations.


2000 ◽  
Author(s):  
Man-Hoe Kim ◽  
Clark W. Bullard

Abstract An experimental study on the air-side heat transfer and pressure drop characteristics for multi-louvered fin and flat tube heat exchangers has been performed. For 45 heat exchangers with different louver angles (15–29°), fin pitches (1.0, 1.2, 1.4 mm) and flow depths (16, 20, 24 mm), a series of tests were conducted for the air-side Reynolds numbers of 100–600, at a constant tube-side water flow rate of 0.32 m3/h. The inlet temperatures of the air and water for heat exchangers were 21°C and 45°C, respectively. The air-side thermal performance data were analyzed using effectiveness-NTU method for cross-flow heat exchanger with both fluids unmixed. The heat transfer coefficient and pressure drop data for heat exchangers with different geometrical configurations were reported in terms of Colburn j-factor and Fanning friction factor f, as functions of Reynolds number based on louver pitch. Correlations for j and f factors are developed and compared to other correlations.


Sign in / Sign up

Export Citation Format

Share Document