scholarly journals Application of Artificial Neural Networks in Prediction of Uniaxial Compressive Strength of Rocks using Well Logs and Drilling Data

2017 ◽  
Vol 191 ◽  
pp. 279-286 ◽  
Author(s):  
Adel Asadi
Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 44
Author(s):  
Fernando A. N. Silva ◽  
João M. P. Q. Delgado ◽  
Rosely S. Cavalcanti ◽  
António C. Azevedo ◽  
Ana S. Guimarães ◽  
...  

The work presents the results of an experimental campaign carried out on concrete elements in order to investigate the potential of using artificial neural networks (ANNs) to estimate the compressive strength based on relevant parameters, such as the water–cement ratio, aggregate–cement ratio, age of testing, and percentage cement/metakaolin ratios (5% and 10%). We prepared 162 cylindrical concrete specimens with dimensions of 10 cm in diameter and 20 cm in height and 27 prismatic specimens with cross sections measuring 25 and 50 cm in length, with 9 different concrete mixture proportions. A longitudinal transducer with a frequency of 54 kHz was used to measure the ultrasonic velocities. An ANN model was developed, different ANN configurations were tested and compared to identify the best ANN model. Using this model, it was possible to assess the contribution of each input variable to the compressive strength of the tested concretes. The results indicate an excellent performance of the ANN model developed to predict compressive strength from the input parameters studied, with an average error less than 5%. Together, the water–cement ratio and the percentage of metakaolin were shown to be the most influential factors for the compressive strength value predicted by the developed ANN model.


2020 ◽  
Vol 32 (19) ◽  
pp. 15669-15669
Author(s):  
Ali Nazari ◽  
Hadi Hajiallahyari ◽  
Ali Rahimi ◽  
Hamid Khanmohammadi ◽  
Mohammad Amini

Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1396 ◽  
Author(s):  
Hubert Anysz ◽  
Piotr Narloch

Cement stabilized rammed earth (CRSE) is a sustainable, low energy consuming construction technique which utilizes inorganic soil, usually taken directly from the construction site, with a small addition of Portland cement as a building material. This technology is gaining popularity in various regions of the world, however, there are no uniform standards for designing the composition of the CSRE mixture. The main goal of this article is to propose a complete algorithm for designing CSRE with the use of subsoil obtained from the construction site. The article’s authors propose the use of artificial neural networks (ANN) to determine the proper proportions of soil, cement, and water in a CSRE mixture that provides sufficient compressive strength. The secondary purpose of the paper (supporting the main goal) is to prove that artificial neural networks are suitable for designing CSRE mixtures. For this purpose, compressive strength was tested on several hundred CSRE samples, with different particle sizes, cement content and water additions. The input database was large enough to enable the artificial neural network to produce predictions of high accuracy. The developed algorithm allows us to determine, using relatively simple soil tests, the composition of the mixture ensuring compressive strength at a level that allows the use of this material in construction.


Sign in / Sign up

Export Citation Format

Share Document