scholarly journals Increasing the energy absorption capacity of structural components made of low alloy steel by combining strain hardening and local heat treatment

2017 ◽  
Vol 207 ◽  
pp. 257-262 ◽  
Author(s):  
Laura Conrads ◽  
Conrad Liebsch ◽  
Gerhard Hirt
Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1074
Author(s):  
Naoko Ikeo ◽  
Tatsuya Matsumi ◽  
Takuya Ishimoto ◽  
Ryosuke Ozasa ◽  
Aira Matsugaki ◽  
...  

In this study, a Ti–6Al–4V alloy composite with uniaxial anisotropy and a hierarchical structure is fabricated using electron beam powder bed fusion, one of the additive manufacturing techniques that enable arbitrary fabrication, and subsequent heat treatment. The uniaxial anisotropic deformation behavior and mechanical properties such as Young’s modulus are obtained by introducing a unidirectional honeycomb structure. The main feature of this structure is that the unmelted powder retained in the pores of the honeycomb structure. After appropriate heat treatment at 1020 °C, necks are formed between the powder particles and between the powder particles and the honeycomb wall, enabling a stress transmission through the necks when the composite is loaded. This means that the powder part has been mechanically functionalized by the neck formation. As a result, a plateau region appears in the stress–strain curve. The stress transfer among the powder particles leads to the cooperative deformation of the composites, contributing to the excellent energy absorption capacity. Therefore, it is expected that the composite can be applied to bone plates on uniaxially oriented microstructures such as long bones owing to its excellent energy absorption capacity and low elasticity to unidirectionally suppress stress shielding.


1999 ◽  
Vol 17 (2) ◽  
pp. 319-325 ◽  
Author(s):  
Koichi OSAWA ◽  
Tsuyoshi SHIOZAKI ◽  
Toshiaki URABE ◽  
Akihide YOSHITAKE ◽  
Takanobu SAITO ◽  
...  

Author(s):  
H Geramizadeh ◽  
S Dariushi ◽  
S Jedari Salami

The current study focuses on designing the optimal three-dimensional printed sandwich structures. The main goal is to improve the energy absorption capacity of the out-of-plane honeycomb sandwich beam. The novel Beta VI and Alpha VI were designed in order to achieve this aim. In the Beta VI, the connecting curves (splines) were used instead of the four diagonal walls, while the two vertical walls remained unchanged. The Alpha VI is a step forward on the Beta VI, which was promoted by filleting all angles among the vertical walls, created arcs, and face sheets. The two offered sandwich structures have not hitherto been provided in the literature. All models were designed and simulated by the CATIA and ABAQUS, respectively. The three-dimensional printer fabricated the samples by fused deposition modeling technique. The material properties were determined under tensile, compression, and three-point bending tests. The results are carried out by two methods based on experimental tests and finite element analyses that confirmed each other. The achievements provide novel insights into the determination of the adequate number of unit cells and demonstrate the energy absorption capacity of the Beta VI and Alpha VI are 23.7% and 53.9%, respectively, higher than the out-of-plane honeycomb sandwich structures.


Sign in / Sign up

Export Citation Format

Share Document