Numerical and experimental investigation for enhancing the energy absorption capacity of the novel three-dimensional printed sandwich structures

Author(s):  
H Geramizadeh ◽  
S Dariushi ◽  
S Jedari Salami

The current study focuses on designing the optimal three-dimensional printed sandwich structures. The main goal is to improve the energy absorption capacity of the out-of-plane honeycomb sandwich beam. The novel Beta VI and Alpha VI were designed in order to achieve this aim. In the Beta VI, the connecting curves (splines) were used instead of the four diagonal walls, while the two vertical walls remained unchanged. The Alpha VI is a step forward on the Beta VI, which was promoted by filleting all angles among the vertical walls, created arcs, and face sheets. The two offered sandwich structures have not hitherto been provided in the literature. All models were designed and simulated by the CATIA and ABAQUS, respectively. The three-dimensional printer fabricated the samples by fused deposition modeling technique. The material properties were determined under tensile, compression, and three-point bending tests. The results are carried out by two methods based on experimental tests and finite element analyses that confirmed each other. The achievements provide novel insights into the determination of the adequate number of unit cells and demonstrate the energy absorption capacity of the Beta VI and Alpha VI are 23.7% and 53.9%, respectively, higher than the out-of-plane honeycomb sandwich structures.

2018 ◽  
Vol 22 (4) ◽  
pp. 948-961 ◽  
Author(s):  
Jinxiang Chen ◽  
Xindi Yu ◽  
Mengye Xu ◽  
Yoji Okabe ◽  
Xiaoming Zhang ◽  
...  

For the development of new types of lightweight sandwich structures, the compressive properties and strengthening mechanism of the middle-trabecular beetle elytron plate were investigated for various values of η (the ratio of the trabecular radius to the honeycomb wall length). The results are as follows: (1) When η = 0.1, the increases in the compressive strength and standard energy absorption capacity of the middle-trabecular beetle elytron plate compared with the honeycomb plate exceed those of the end-trabecular beetle elytron plate; with an increase to η = 0.15, the compressive strength remains nearly the same, the energy absorption capacity undergoes a significant further increase, and the trabeculae exhibit Φ-type failure. (2) The strengthening mechanism that gives rise to the compressive properties of the middle-trabecular beetle elytron plate is proposed as follows: the trabeculae are located at the center of the honeycomb walls, where the maximum deformations would otherwise occur; they constrain the deformation of the honeycomb walls; and the number of trabeculae in the middle-trabecular beetle elytron plate also exceeds that in the end-trabecular beetle elytron plate. (3) Middle-trabecular beetle elytron plates have the advantage of facile manufacturing, which will establish a basis for promoting the application of beetle elytron plates.


2014 ◽  
Vol 626 ◽  
pp. 57-61
Author(s):  
Gin Boay Chai ◽  
Guo Xing Lu

Abstract. This contribution presents the investigation of energy absorption mechanism of metal tubes and composite-wrapped metal tubes subjected to a diametric deformation via an expansion process. In the experiments, the expansion of the tubes was performed under quasi-static loading using a conical-cylindrical expansion die. The experimental results are repeatable and thus reliable. An extensive finite element analyses and experimental investigation were carried out in parallel. Both two-dimensional and three-dimensional finite element models were created based on the actual experimental geometrical and material parameters. Results from the finite element analyses correlate rather well with the experimental data. Glass fibre-wrapped metal tubes showed an increased steady-state reaction force which in turn reflects better specific energy absorption capacity for every layer of composite wrapped as compared to bare metal tubes.


Author(s):  
M Altin ◽  
E Acar ◽  
MA Güler

This paper presents a numerical study of regular and hierarchical honeycomb structures subjected to out-of-plane impact loading. The specific energy absorption capacity of honeycomb structures via nonlinear explicit finite element analysis is investigated. The constructed finite element models are validated using experimental data available in the literature. The honeycomb structures are optimized by using a surrogate-based optimization approach to achieve maximum specific energy absorption capacity. Three surrogate models polynomial response surface approximations, radial basis functions, and Kriging models are used; Kriging models are found to be the most accurate. The optimum specific energy absorption value obtained for hierarchical honeycomb structures is found to be 148% greater than that of regular honeycomb structures.


2015 ◽  
Vol 778 ◽  
pp. 18-23
Author(s):  
Jing Hui Zhao ◽  
Jian Feng Wang ◽  
Tao Liu ◽  
Na Yang ◽  
Wen Jie Duan ◽  
...  

Aluminum honeycomb is a lightweight material with high strength and strong capacity of energy absorption. In order to research energy absorption characteristic of aluminum honeycomb material, quasi-static and dynamic out-of-plane compression experiments are carried out on a double-layer aluminum honeycomb impact attenuator of one FSAE racing car. Plateau stress (PS), specific load (SL), mass specific energy absorption (MSEA), volume specific energy absorption (VSEA) and other parameters of the tested aluminum honeycomb under both quasi-static and dynamic impact conditions are analyzed. The results show that the tested aluminum honeycomb impact attenuator has good energy absorption capacity to meet the collision requirements. Furthermore, under the condition of dynamic impact, the energy absorption capacity of this honeycomb improves compared with that under the condition of quasi static compression.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
S. Talebi ◽  
R. Hedayati ◽  
M. Sadighi

AbstractClosed-cell metal foams are cellular solids that show unique properties such as high strength to weight ratio, high energy absorption capacity, and low thermal conductivity. Due to being computation and cost effective, modeling the behavior of closed-cell foams using regular unit cells has attracted a lot of attention in this regard. Recent developments in additive manufacturing techniques which have made the production of rationally designed porous structures feasible has also contributed to recent increasing interest in studying the mechanical behavior of regular lattice structures. In this study, five different topologies namely Kelvin, Weaire–Phelan, rhombicuboctahedron, octahedral, and truncated cube are considered for constructing lattice structures. The effects of foam density and impact velocity on the stress–strain curves, first peak stress, and energy absorption capacity are investigated. The results showed that unit cell topology has a very significant effect on the stiffness, first peak stress, failure mode, and energy absorption capacity. Among all the unit cell types, the Kelvin unit cell demonstrated the most similar behavior to experimental test results. The Weaire–Phelan unit cell, while showing promising results in low and medium densities, demonstrated unstable behavior at high impact velocity. The lattice structures with high fractions of vertical walls (truncated cube and rhombicuboctahedron) showed higher stiffness and first peak stress values as compared to lattice structures with high ratio of oblique walls (Weaire–Phelan and Kelvin). However, as for the energy absorption capacity, other factors were important. The lattice structures with high cell wall surface area had higher energy absorption capacities as compared to lattice structures with low surface area. The results of this study are not only beneficial in determining the proper unit cell type in numerical modeling of dynamic behavior of closed-cell foams, but they are also advantageous in studying the dynamic behavior of additively manufactured lattice structures with different topologies.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 249
Author(s):  
Przemysław Rumianek ◽  
Tomasz Dobosz ◽  
Radosław Nowak ◽  
Piotr Dziewit ◽  
Andrzej Aromiński

Closed-cell expanded polypropylene (EPP) foam is commonly used in car bumpers for the purpose of absorbing energy impacts. Characterization of the foam’s mechanical properties at varying strain rates is essential for selecting the proper material used as a protective structure in dynamic loading application. The aim of the study was to investigate the influence of loading strain rate, material density, and microstructure on compressive strength and energy absorption capacity for closed-cell polymeric foams. We performed quasi-static compressive strength tests with strain rates in the range of 0.2 to 25 mm/s, using a hydraulically controlled material testing system (MTS) for different foam densities in the range 20 g/dm3 to 220 g/dm3. The above tests were carried out as numerical simulation using ABAQUS software. The verification of the properties was carried out on the basis of experimental tests and simulations performed using the finite element method. The method of modelling the structure of the tested sample has an impact on the stress values. Experimental tests were performed for various loads and at various initial temperatures of the tested sample. We found that increasing both the strain rate of loading and foam density raised the compressive strength and energy absorption capacity. Increasing the ambient and tested sample temperature caused a decrease in compressive strength and energy absorption capacity. For the same foam density, differences in foam microstructures were causing differences in strength and energy absorption capacity when testing at the same loading strain rate. To sum up, tuning the microstructure of foams could be used to acquire desired global materials properties. Precise material description extends the possibility of using EPP foams in various applications.


2014 ◽  
Vol 1019 ◽  
pp. 96-102
Author(s):  
Ali Taherkhani ◽  
Ali Alavi Nia

In this study, the energy absorption capacity and crush strength of cylindrical thin-walled structures is investigated using nonlinear Finite Elements code LS-DYNA. For the thin-walled structure, Aluminum A6063 is used and its behaviour is modeled using power-law equation. In order to better investigate the performance of tubes, the simulation was also carried out on structures with other types of cross-sections such as triangle, square, rectangle, and hexagonal, and their results, namely, energy absorption, crush strength, peak load, and the displacement at the end of tubes was compared to each other. It was seen that the circular cross-section has the highest energy absorption capacity and crush strength, while they are the lowest for the triangular cross-section. It was concluded that increasing the number of sides increases the energy absorption capacity and the crush strength. On the other hand, by comparing the results between the square and rectangular cross-sections, it can be found out that eliminating the symmetry of the cross-section decreases the energy absorption capacity and the crush strength. The crush behaviour of the structure was also studied by changing the mass and the velocity of the striker, simultaneously while its total kinetic energy is kept constant. It was seen that the energy absorption of the structure is more sensitive to the striker velocity than its mass.


Sign in / Sign up

Export Citation Format

Share Document