scholarly journals Thermal analysis of perforated pin-fins heat sink under forced convection condition

2018 ◽  
Vol 24 ◽  
pp. 290-298 ◽  
Author(s):  
Alhassan Salami Tijani ◽  
Nursyameera Binti Jaffri
2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Kyoung Joon Kim

In this paper we introduce a hybrid fin heat sink (HFH) proposed for the thermal control of light emitting diode (LED) lighting modules. The HFH consists of the array of hybrid fins which are hollow pin fins having internal channels and integrated with plate fins. The thermal performance of the HFH under either natural or forced convection condition is both experimentally and numerically investigated, and then its performance is compared with that of a pin fin heat sink (PFH). The observed maximum discrepancies of the numerical prediction to the measurement for the HFH are 7% and 6% for natural and forced convection conditions. The reasonable discrepancies demonstrate the tight correlation between the numerical prediction and the measurement. The thermal performance of the HFH is found to be 12–14% better than the PFH for the natural convection condition. The better performance might be explained by the enlarged external surface and the internal flow via the channel of the HF. The reference HFH is about 14% lighter than the reference PFH. The better thermal performance and the lighter weight of the HFH show the feasibility as the promising heat sink especially for the thermal control of LED street and flood lighting modules.


Author(s):  
Shangsheng Feng ◽  
Tongbeum Kim ◽  
Tianjian Lu

Built upon the porous medium approach, a compact model is presented for forced convection in pin and plate fin heat sinks subjected to non-uniform heating. The modified Darcy’s law and the two-equation model are adopted separately to describe fluid flow and heat transfer in the porous model. To take account of heat spreading in the plate-fins and its absence in the pin-fins, the concept of anisotropic effective thermal conductivity is employed in the energy equation for the solid phase. To validate the model, experiments are conducted for both pin- and plate-fin heat sinks and the measured local temperature distribution on the heat sink substrate is compared with that predicted. Experimental results reveal that, due to additional heat spreading in the plate-fins, the substrate temperature of the plate-fin heat sink has a more uniform distribution than that of the pin-fin heat sink. Obtained good agreement between model predictions and experimental measurements suggests that the present model is suitable for predicting the spreading effects in the connected solid phase of porous media (e.g., plate-fins) under non-uniform heating boundary conditions.


In the present work of heat transfer for hexagonal fins (1mm & 2mm) grooves on surface and threaded fin is addressed. The test has been performed on three different fin geometries having hexagonal (1mm)groove, hexagonal(2mm)groove, threaded fin(0.5mm)pitch and test performed by using a centrifugal blower, test section, heater and test panel and Results are obtained for temperature distribution, effectiveness, efficiencies at a same flow rate of air as it was conducted in forced convection and the same parameters considered for different values are obtained for natural convection with different fins as well. In this experiment for forced convection, the airflow rate is constant i.e, 2.3371 m/sec throughout the experiment. In natural convection, efficiency for the threaded fin is high with 93.89% and effectiveness of hexagonal(2mm)depth fin is 28.11. In forced convection, the efficiency of the threaded fin is high with 81.83% and effectiveness of hexagonal(1mm)depth fin is high with 23.51 was recorded. The heat transfer rate is higher in natural convection is hexagonal(2mm)depth fin with 11.41 watts and 21.75 watts in forced convection with hexagonal(1mm)depth fin


2021 ◽  
Vol 39 (1) ◽  
pp. 170-178
Author(s):  
Niranjan Ramendra Singh ◽  
Singh Onkar ◽  
Janakarajan Ramkumar

Thermal management of the new generation’s high performance electronic and mechanical devices is becoming important due to their miniaturization. Conventionally, the plate fin arrangement is widely used for removal of dissipated heat but, their effectiveness is not up to mark. Among different options, the most attractive and efficient alternative for overcoming this problem is micro pin fin heat sink. This paper presents the experimental investigation of square micro-pin fins heat sink for identifying the most suitable pin fin geometry for heat removal applications under forced convection. Twenty five square micro pin fin heat sinks were tested for three different heat load and Reynolds number. The results show that for large fin height lower thermal resistance was observed at the cost of large pressure drop. The dimensionless heat transfer coefficient increases with fin height and Reynolds number while it decreases with increasing fin spacing. The improvement in micro pin fin efficiency were observed by about 2 to 9% owing to presence of fins on the impingement surface, flow mixing, disruption of the boundary layers, and augmentation of turbulent transport.


2019 ◽  
Vol 50 (8) ◽  
pp. 757-772 ◽  
Author(s):  
Yicang Huang ◽  
Hui Li ◽  
Shengnan Shen ◽  
Yongbo Xue ◽  
Mingliang Xu ◽  
...  

2000 ◽  
Author(s):  
Brian Leonhardt ◽  
Aaron Webb ◽  
W. Bowman

Sign in / Sign up

Export Citation Format

Share Document