NUMERICAL ANALYSIS OF THE THERMAL PERFORMANCE OF A NOVEL DOUBLE-LAYERED HEAT SINK WITH STAGGERED PIN FINS

2019 ◽  
Vol 50 (8) ◽  
pp. 757-772 ◽  
Author(s):  
Yicang Huang ◽  
Hui Li ◽  
Shengnan Shen ◽  
Yongbo Xue ◽  
Mingliang Xu ◽  
...  
2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Kyoung Joon Kim

In this paper we introduce a hybrid fin heat sink (HFH) proposed for the thermal control of light emitting diode (LED) lighting modules. The HFH consists of the array of hybrid fins which are hollow pin fins having internal channels and integrated with plate fins. The thermal performance of the HFH under either natural or forced convection condition is both experimentally and numerically investigated, and then its performance is compared with that of a pin fin heat sink (PFH). The observed maximum discrepancies of the numerical prediction to the measurement for the HFH are 7% and 6% for natural and forced convection conditions. The reasonable discrepancies demonstrate the tight correlation between the numerical prediction and the measurement. The thermal performance of the HFH is found to be 12–14% better than the PFH for the natural convection condition. The better performance might be explained by the enlarged external surface and the internal flow via the channel of the HF. The reference HFH is about 14% lighter than the reference PFH. The better thermal performance and the lighter weight of the HFH show the feasibility as the promising heat sink especially for the thermal control of LED street and flood lighting modules.


Author(s):  
Sulaman Pashah ◽  
Abul Fazal M. Arif

Heat sinks are used in modern electronic packaging system to enhance and sustain system thermal performance by dissipating heat away from IC components. Pin fins are commonly used in heat sink applications. Conventional metallic pins fins are efficient in low Biot number range whereas high thermal performance can be achieved in high Biot number regions with orthotropic composite pin fins due to their adjustable thermal properties. However, several challenges related to performance as well as manufacturing need to be addressed before they can be successfully implemented in a heat sink design. A heat sink assembly with metallic base plate and polymer composite pin fins is a solution to address manufacturing constraints. During the service life of an electronic packaging, the heat sink assembly is subjected to power cycles. Cyclic thermal stresses will be important at the pin-fin and base-plate interface due to thermal mismatch. The cyclic nature of stresses can lead to fatigue failure that will affect the reliability of the heat sink and electronic packaging. A finite element model of the heat sink is used to investigate the thermal stress cyclic effect on thermo-mechanical reliability performance. The aim is to assess the reliability performance of the epoxy bond at the polymer composite pin fins and metallic base plate interface in a heat-sink assembly.


Author(s):  
T. J. John ◽  
B. Mathew ◽  
H. Hegab

In this paper the authors are studying the effect of introducing S-shaped pin-fin structures in a micro pin-fin heat sink to enhance the overall thermal performance of the heat sinks. For the purpose of evaluating the overall thermal performance of the heat sink a figure of merit (FOM) term comprising both thermal resistance and pumping power is introduced in this paper. An optimization study of the overall performance based on the pitch distance of the pin-fin structures both in the axial and the transverse direction, and based on the curvature at the ends of S-shape fins is also carried out in this paper. The value of the Reynolds number of liquid flow at the entrance of the heat sink is kept constant for the optimization purpose and the study is carried out over a range of Reynolds number from 50 to 500. All the optimization processes are carried out using computational fluid dynamics software CoventorWARE™. The models generated for the study consists of two sections, the substrate (silicon) and the fluid (water at 278K). The pin fins are 150 micrometers tall and the total structure is 500 micrometer thick and a uniform heat flux of 500KW is applied to the base of the model. The non dimensional thermal resistance and nondimensional pumping power calculated from the results is used in determining the FOM term. The study proved the superiority of the S-shaped pin-fin heat sinks over the conventional pin-fin heat sinks in terms of both FOM and flow distribution. S-shaped pin-fins with pointed tips provided the best performance compared to pin-fins with straight and circular tips.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 245
Author(s):  
Guo-Fu Xie ◽  
Lei Zhao ◽  
Yuan-Yuan Dong ◽  
Yu-Guang Li ◽  
Shang-Lin Zhang ◽  
...  

With the development of micromachining technologies, a wider use of microchannel heat sink (MCHS) is achieved in many fields, especially for cooling electronic chips. A microchannel with a width of 500 μm and a height of 500 μm is investigated through the numerical simulation method. Pin fins are arranged at an inclined angle of 0°, 30°, 45°, and 60°, when arrangement method includes in-lined pattern and staggered pattern. The effects of inclined angle and arrangement method on flow field and temperature field of MCHSs are studied when Reynolds number ranges from 10 to 300. In addition to this, quantitative analyses of hydraulic and thermal performance are also discussed in this work. With the increase of inclined angle, the variation of friction factor and Nusselt number do not follow certain rules. The best thermal performance is achieved in MCHS with in-lined fines at an inclined angle of 30° accompanied with the largest friction factor. Arrangement method of pin fins plays a less significant role compared with inclined angle from a general view, particularly in the Reynolds number range of 100~300.


Author(s):  
Stephen A. Solovitz ◽  
Thomas E. Conder

Modern advancements in transistor technology have pushed thermal dissipations from power electronics near the edge of the capability of single-phase micro-channel designs. To alleviate this problem, researchers have begun investigating enhancements to these designs, using methods such as pin fins, turbulators, and impinging jets. These techniques can potentially enhance the convective thermal performance by a factor of 2 to 3, although they do incur a similar magnitude pressure penalty. However, because of the requirements of electrical isolation and mechanical assembly, much of this benefit is tempered, as the convective thermal resistance is only a small fraction of the total resistance. This limitation can be removed through the use of an integral package design where the heat sink passages are fashioned in the electrical stack, which can reduce the conductive resistance until convective enhancements are significant again. These methods include fabrication of micro-channels directly into the active metal braze substrate and potentially even the electrical insulation layer. Thus, while a traditional, non-integral design only experiences a 5% overall benefit when the convective resistance is reduced by 50%, an integral package can have a 20 to 30% improvement for the same enhancement. To examine this capability, a series of computational fluid dynamics studies were conducted to study the performance of several integral micro-channel heat sink configurations. These simulations determined the response for a range of coolants, flowrates, device power dissipations, and operating conditions. These results will serve as a baseline for further development of enhanced, integral micro-channel designs.


2019 ◽  
Author(s):  
Pabitra Kumar Mandal ◽  
Sayantan Sengupta ◽  
Subhas Chandra Rana ◽  
Dipankar Bhanja

Author(s):  
Mohammad Nawaz Khan ◽  
Munawwar Nawab Karimi

In this study, a numerical analysis of a microchannel with the different configuration of varying height of pin fins entrenched at the bottom of the channel base wall has been carried out. Five different configurations of pin fins arrangement which are considered in this study are, Case 1(Full length fins in complete microchannel), Case 2(Full length fins at the upstream), Case 3(Full length fins at the downstream), Case 4(Full length fin at the center of microchannel), Case 5(Full length fins at the inlet and exit of microchannel) and the results of these five cases are compared with the plain rectangular microchannel. In this investigation, deionized ultra-filtered water is used and Reynold’s number is ranging from 150 to 350. Results reveals that the highest Nusselt number is achieved by case 2 at a lesser value of Reynold’s number while by case 5 at higher Reynold’s number and the lowest pressure drop is occurring in case 4. The overall thermal performance of case 2 beats the corresponding cases.


Sign in / Sign up

Export Citation Format

Share Document