Biomechanical analysis of the press-fit effect in a conical Morse taper implant system by using an in vitro experimental test and finite element analysis

Author(s):  
Hung-Chih Chang ◽  
Chih-Han Chang ◽  
Hung-Yuan Li ◽  
Chau-Hsiang Wang
Author(s):  
Xuetao Zhang ◽  
Jian Mao ◽  
Yufeng Zhou ◽  
Fangqiu Ji ◽  
Xianshuai Chen

Alveolar bone atrophy can directly cause a decrease in bone level. The effect of this process on the service life of dental implants is unknown. The aim of this study was to determine the failure forms of the two-piece dental implants in the descending process of alveolar bone level, and the specific states of the components during the failure process. The CAD software SolidWorks was used to establish the model of alveolar bone and dental implants in this article. The finite element analysis was used to analyze the statics of the dental implants in the host oral model. The finite element analysis results showed that the stress concentration point of the implant and abutment in the implant system has changed greatly during the descending process of alveolar bone level, and indirectly increased the fatigue life of the same fatigue risk point. At the same time, the dental implants were tested in vitro in the descending process of alveolar bone level. Then, the fracture of the implant system was scanned by scanning electron microscope. The fatigue test results proved the finite element analysis hypothesis the central screw first fractured under fatigue and then caused an overload break of the implant and abutment.


2012 ◽  
Vol 8 (1) ◽  
Author(s):  
Gianni Frisardi ◽  
Sandro Barone ◽  
Armando V Razionale ◽  
Alessandro Paoli ◽  
Flavio Frisardi ◽  
...  

2021 ◽  
Vol 1109 (1) ◽  
pp. 012027
Author(s):  
J Gonzaga ◽  
A T Ubando ◽  
E Arriola ◽  
R L Moran ◽  
N R E Lim ◽  
...  

Author(s):  
Luiz T. Souza ◽  
David W. Murray

The paper presents results for finite element analysis of full-sized girth-welded specimens of line pipe and compares these results with the behavior exhibited by test specimens subjected to constant axial force, internal pressure and monotonically increasing curvatures. Recommendations for the ‘best’ type of analytical finite element model are given. Comparisons between the behavior predicted analytically and the observed behavior of the experimental test specimens are made. The mechanism of wrinkling is explained and the evolution of the deformed configurations for different wrinkling modes is examined. It is concluded that the analytical tools now available are sufficiently reliable to predict the behavior of pipe in a manner that was not previously possible and that this should create a new era for the design and assessment of pipelines if the technology is properly exploited by industry.


2003 ◽  
Vol 15 (02) ◽  
pp. 82-85 ◽  
Author(s):  
SHYH-CHOUR HUANG ◽  
CHANG-FENG TSAI

This paper presents results from using a 3-dimensional finite element model to assess the stress distribution in the bone, in the implant and in the abutment as a function of the implant's diameter and length. Increasing implant diameter and length increases the stability of the implant system. By using a finite element analysis, we show that implant length does not decrease the stress distribution of either the implant or the bone. Alternatively, however implant diameter increases reduce the stresses. For the latter case, the contact area between implant and bone is increased thus the stress concentration effect is decreased. Also, with increased implant diameter the bone loss is decreased and as a consequence the success rate is improved.


Sign in / Sign up

Export Citation Format

Share Document