scholarly journals Signal processing methods to improve the Signal-to-noise ratio (SNR) in ultrasonic non-destructive testing of wind turbine blade

2017 ◽  
Vol 5 ◽  
pp. 1184-1191 ◽  
Author(s):  
Kumar Anubhav Tiwari ◽  
Renaldas Raisutis ◽  
Vykintas Samaitis
Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3381 ◽  
Author(s):  
Shakeb Deane ◽  
Nicolas P. Avdelidis ◽  
Clemente Ibarra-Castanedo ◽  
Hai Zhang ◽  
Hamed Yazdani Nezhad ◽  
...  

This work aims to address the effectiveness and challenges of non-destructive testing (NDT) by active infrared thermography (IRT) for the inspection of aerospace-grade composite samples and seeks to compare uncooled and cooled thermal cameras using the signal-to-noise ratio (SNR) as a performance parameter. It focuses on locating impact damages and optimising the results using several signal processing techniques. The work successfully compares both types of cameras using seven different SNR definitions, to understand if a lower-resolution uncooled IR camera can achieve an acceptable NDT standard. Due to most uncooled cameras being small, lightweight, and cheap, they are more accessible to use on an unmanned aerial vehicle (UAV). The concept of using a UAV for NDT on a composite wing is explored, and the UAV is also tracked using a localisation system to observe the exact movement in millimetres and how it affects the thermal data. It was observed that an NDT UAV can access difficult areas and, therefore, can be suggested for significant reduction of time and cost.


Ultrasonics ◽  
1974 ◽  
Vol 12 (3) ◽  
pp. 100-105 ◽  
Author(s):  
J.P. Simanski ◽  
J. Pouliquen ◽  
A. Defebvre

Author(s):  
Martin H. Skjelvareid ◽  
Yngve Birkelund

Synthetic aperture focusing techniques (SAFT) have already been studied within several fields of non-destructive testing, but so far only with a single, relatively homogenous medium. In this article, we modify the original time-domain SAFT in order to image the interior of a multilayer structure. Standard focusing techniques assume that the wave velocity is constant within the volume to be imaged. The concept of the root-mean-square (RMS) velocity is used here to modify the classical delay-and-sum algorithm to handle layers with differing wave velocities. A scheme for iteratively using this to estimate the interfaces between the layers is also presented. The proposed method is demonstrated on ultrasonic B-scans of two test objects immersed in water, and it is shown that the increased lateral resolution and signal-to-noise ratio of standard SAFT is extended to the multilayer case. The increased resolution also makes it possible to accurately estimate the interfaces between consecutive layers, as long as the preceding interfaces are relatively smooth.


Sign in / Sign up

Export Citation Format

Share Document