Using sequentially coupled UV/H2O2-biologic systems to treat industrial wastewater with high carbon and nitrogen contents

2020 ◽  
Vol 137 ◽  
pp. 192-199 ◽  
Author(s):  
A.D. Ortiz-Marin ◽  
L.E. Amabilis-Sosa ◽  
E.R. Bandala ◽  
R.A. Guillén-Garcés ◽  
L.G. Treviño-Quintanilla ◽  
...  
2021 ◽  
Vol 232 (9) ◽  
Author(s):  
Yafei Guo ◽  
Anjum Anjum ◽  
Ahmad Khan ◽  
Asif Naeem ◽  
Karl H. Mühling

AbstractOwing to their high carbon and nitrogen contents, biogas residues may lead to higher carbon dioxide (CO2) and nitrous oxide (N2O) emissions from soils. Acidification of biogas slurry and application of nitrification inhibitors (NIs) could mitigate the emission of these gases. An incubation experiment was therefore carried out to investigate the effect of NIs, DMPP (3, 4-dimethylpyrazole phosphate), and PIADIN (active ingredients: 3.00–3.25% 1,2,4-triazole and 1.50–1.65% 3-methylpyrazole), on CO2 and N2O emissions from soils fertilized with biogas residues and acidified biogas residues. Biogas residues produced higher ammonium-nitrogen (NH4+-N) and nitrate-nitrogen (NO3−-N) concentrations in soils which resulted in higher emissions of CO2-C and N2O-N than that from acidified biogas residues. Both DMPP and PIADIN significantly decreased the emissions of CO2-C (8.1–55.8%) and N2O-N (87–98%) and maintained lower NH4+-N and NO3−-N concentrations when compared to control (without nitrification inhibitors). However, the DMPP had a higher reduction capability for CO2-C emissions than PIADIN in acidified biogas residue applied soil. In conclusion, the acidification of biogas residues and application of NIs are effect in reducing gaseous emission from biogas residue fertilized soils and thus could improve the fertilizer effectiveness of the residues.


Alloy Digest ◽  
2018 ◽  
Vol 67 (1) ◽  

Abstract UGI 4116N is a martensitic stainless steel with high carbon and nitrogen for hardness and corrosion resistance. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1275. Producer or source: Schmolz + Bickenbach USA Inc..


Author(s):  
Ximing Deng ◽  
Shutao Chen ◽  
Chunhua Lv ◽  
Kai Yang ◽  
Dongyao Shang ◽  
...  

2007 ◽  
Vol 539-543 ◽  
pp. 4105-4110
Author(s):  
Ji Hyun Yoon ◽  
Bong Sang Lee ◽  
Eui Pak Yoon

The objective of this investigation was to correlate the chemical composition of welding rods for gas tungsten arc welding with the fracture resistance and tensile properties of type 347 welds through the systematic tests and microstructural analyses. Five weld metals which differed in contents of carbon, nitrogen and niobium each other and a high δ-ferrite containing weld metal were deposited by the six different welding rods. J-R fracture resistance and tensile properties were evaluated for the type 347 welds. The microstructural examinations were performed to relate key microstructural features to mechanical properties. It was found that the contents of Nb(C,N) precipitates in type 347 welds were determined by the mixed function of carbon and nitrogen and niobium contents in welding rods. The strengths of type 347 welds were in direct proportion to the contents of Nb(C,N) and J-R fracture resistances were inversely proportional to the contents of Nb(C,N). It was concluded that the type 347 weld with high fracture resistance and adequate strength was obtainable by controlling the sum of carbon and nitrogen contents near 0.1wt% and a limitation of the carbon content below 0.04 wt% in welding rod.


Sign in / Sign up

Export Citation Format

Share Document