Synergistic effects of co-gasification of municipal solid waste and biomass in fixed-bed gasifier

2021 ◽  
Vol 148 ◽  
pp. 1-12
Author(s):  
Jianjun Cai ◽  
Ronghua Zeng ◽  
Wenheng Zheng ◽  
Shubin Wang ◽  
Jie Han ◽  
...  
2013 ◽  
Vol 9 (1) ◽  
pp. 57-62

The waste to renewable energy source has become a priority in the wastes treatment field. The research goal is not only the wastes destruction but also a better thermal energy recovery from the processes. The municipal solid waste presents a high heterogeneity degree from the dimensional point of view, form and its components specific weight of as well as thermal-chemical characteristics. That’s why there are many treatment methods, each one with its own particularities. For a better understanding of the phenomenon during thermal degradation processes both under pyrolysis or atmospheric pressure gasification stages we first accomplished a laboratory scale series of experiments in a tubular reactor, on small quantities (5 – 10 grams) of reconstituted urban wastes. For the validation of the obtained data on more representative samples we extended the experiment to an original industrial scale pilot installation that enables the continuous thermal treatment of 10 – 50 waste kilograms per hour under oxidant or non-oxidant atmosphere (on choice) and at variable temperature between 400 °C – 1100 ºC. The residential time of the treated sample in the installation and the flow conditions can be set independently. The installation reproduces the incinerators or the pyrolysis / gasification reactor process conditions and provides complete information on the wastes thermal degradation kinetics and on the pollutant emissions. The particularity of the device consists in the product advancing piston – like flow system based on the bed vibration. The product particles in the bed have a translation movement without any layer shift. Therefore the particles distribution in a given product bed section is the same all along the installation from the feeding inlet to the extraction. That characteristic enables us to extrapolate and compare the laboratory results of the fixed bed treatment to the industrial pilot continuously treatment applied on the same product: reconstituted municipal solid waste, one of the most heterogynous solid wastes in mixture. The main targets were the sample mass reduction rate, the resulting gases composition, the samples mechanical behavior for different temperature levels, residential time, treatment atmosphere conditions and different steam flow rates (in the gasification process). The results were compared to an established reference – the incineration. The paper presents the research and results on the degradation mechanisms of MSW treated samples in those two equipments from the Science Division CNRS, Department of Industrial Methods, University of Technology Compiègne, France.


2013 ◽  
Vol 779-780 ◽  
pp. 1394-1397
Author(s):  
Jin Wei Jia ◽  
Xin Qian Shu ◽  
He Long Hui ◽  
Xing Min Fu ◽  
Shu Cheng Liu ◽  
...  

To investigate the effects of gangue on pyrolysis of municipal solid waste (MSW), pyrolysis of MSW with gangue has been conducted by TG and fixed-bed reactor, respectively. The effect of gangue on pyrolysis product yields and compositions of gaseous products was investigated and the obtained results were compared with similar experiments without gangue. It was shown that gangue can improve the pyrolytic reaction of MSW, reduce the char yield, increase the liquid yield. And influences of gangue on yields of H2, CO, CH4 and CO2 were more apparent, the yields of H2, CO and CO2 with gangue were improved 12.5%, 11.8% and 175%, respectively, conversely, the yield of CH4 was reduced 15.4% compared with no gangue.


2014 ◽  
Vol 1010-1012 ◽  
pp. 947-951
Author(s):  
Jin Wei Jia ◽  
Ming Yuan Lu ◽  
Yue Fu Yuan ◽  
Lu Liu ◽  
Feng Sheng Yang ◽  
...  

An experimental study on co-pyrolysis of municipal solid waste and corn stalk was performed in a fixed-bed reactor under atmospheric pressure. The effect of different blending ratio on the pyrolysis product yields and compositions of the gaseous products was investigated. The results indicated that there exist synergetic effects in the co-pyrolysis of municipal solid waste and corn stalk. Under the different blending ratio conditions, the char and liquid yields were lower than the theoretical values calculated on pyrolysis of each individual municipal solid waste and corn stalk, and consequently the gas yields were higher. H2 and CH4 obtained co-pyrolysis at 800°C-900°C of 40% blending ratio conditions were higher than those of municipal solid waste and corn stalk alone.


2010 ◽  
Vol 101 (16) ◽  
pp. 6517-6520 ◽  
Author(s):  
Siyi Luo ◽  
Bo Xiao ◽  
Zhiquan Hu ◽  
Shiming Liu ◽  
Yanwen Guan ◽  
...  

Author(s):  
Arthur M. Omari ◽  
John P. John ◽  
Baraka Kichonge

In this study, a Computational Fluid Dynamics (CFD) technique was used to develop a model for the simulation and flow conditions of the incinerator. The CFD technique are based on subdividing the volume of interest, i.e., the combustion chamber (or other parts of the plant) into a grid of elementary volumes. The relevant equations of conservation (mass, momentum, energy) are then applied to each of those elements, after defining all inputs, outputs and boundary conditions. The resulting system is then integrated from start to finish, after introducing momentum, mass and heat transfer. The objective of the study was to evaluate and optimize the performance of locally available incinerators in Tanzania. The small scale municipal solid waste incinerator modelling was done by using a fluent solver. The case study of the existing incinerator at a Bagamoyo hospital in Tanzania was used as a model and the obtained values were compared with simulated results and other publications for validation. The design optimization using CFD techniques to predict the performance of incinerator showed the deviation of input air by 14%, the mass flow rate by 26.5%, the mass fraction of carbon dioxide by 10.4% and slight deviation of nitrogen dioxide and carbon monoxide. The study suggested removing the ash during the incineration process by using a moving grate mechanism to minimize the possibility of formation of NOX. The study found the maximum mass flow rate capacity of incinerator to be 68kg/h with input air A1 as 0.03639 kg/s, input air A2 as 0.03046 kg/s and input air A3 as 0.03409 kg/s. The findings indicated that as capacity is scaled up, the available momentum declines relative to the dimensions of the furnace.


2012 ◽  
Vol 12 (11) ◽  
pp. 1176-1180 ◽  
Author(s):  
Mohd Hizami Mohd Yusoff ◽  
Ridzuan Zakaria .

Sign in / Sign up

Export Citation Format

Share Document