scholarly journals Modeling and simulation of a fixed bed gasification process for thermal treatment of municipal solid waste and agricultural residues

2021 ◽  
Vol 7 ◽  
pp. 256-269
Author(s):  
Matheus Oliveira ◽  
Ana Ramos ◽  
Eliseu Monteiro ◽  
Abel Rouboa
2020 ◽  
Vol 5 (4) ◽  
pp. 202-209
Author(s):  
Alexander Topal ◽  
◽  
Iryna Holenko ◽  
Luidmyla Haponych ◽  
◽  
...  

For the municipal solid waste (MSW) to be used in a proper way, it is necessary to implement clean technologies capable of thermal treatment of MSW and RDF in order to produce heat and electricity while meeting current ecological requirements. Nowadays, a number of technologies for MSW/RDF thermal treating are being used worldwide. Among them, the most proven technologies, applicable for industrial introduction, have been considered while analyzing their advantages/ disadvantages accounting for local conditions of Ukraine.


2021 ◽  
Vol 11 (9) ◽  
pp. 3939
Author(s):  
Krzysztof Pikoń ◽  
Nikolina Poranek ◽  
Adrian Czajkowski ◽  
Beata Łaźniewska-Piekarczyk

The purpose of the study presented in this text is to show the influence of COVID-19 on waste management systems and circular economy stream, and their impact on circular economy, particularly the economic impact of the pandemic on the waste management sector, impact on circular economy objectives’ implementation as well as additional challenges like the need for hygienization of waste streams during different implementation efforts, such as changes in the municipal solid waste market and different waste processes of their disposal. Additionally, some methods—such as thermal treatment—which seemed to be not fully aligned with the circular economy approach have advantages not taken into account before. Incineration of higher volume of waste affects the waste structure and will change some of the circular economy objectives. The analysis was carried out on the example of the Polish market.


2017 ◽  
Vol 138 ◽  
pp. 668-673
Author(s):  
Prodpran Siritheerasas ◽  
Phichayanan Waiyanate ◽  
Hidetoshi Sekiguchi ◽  
Satoshi Kodama

2013 ◽  
Vol 9 (1) ◽  
pp. 57-62

The waste to renewable energy source has become a priority in the wastes treatment field. The research goal is not only the wastes destruction but also a better thermal energy recovery from the processes. The municipal solid waste presents a high heterogeneity degree from the dimensional point of view, form and its components specific weight of as well as thermal-chemical characteristics. That’s why there are many treatment methods, each one with its own particularities. For a better understanding of the phenomenon during thermal degradation processes both under pyrolysis or atmospheric pressure gasification stages we first accomplished a laboratory scale series of experiments in a tubular reactor, on small quantities (5 – 10 grams) of reconstituted urban wastes. For the validation of the obtained data on more representative samples we extended the experiment to an original industrial scale pilot installation that enables the continuous thermal treatment of 10 – 50 waste kilograms per hour under oxidant or non-oxidant atmosphere (on choice) and at variable temperature between 400 °C – 1100 ºC. The residential time of the treated sample in the installation and the flow conditions can be set independently. The installation reproduces the incinerators or the pyrolysis / gasification reactor process conditions and provides complete information on the wastes thermal degradation kinetics and on the pollutant emissions. The particularity of the device consists in the product advancing piston – like flow system based on the bed vibration. The product particles in the bed have a translation movement without any layer shift. Therefore the particles distribution in a given product bed section is the same all along the installation from the feeding inlet to the extraction. That characteristic enables us to extrapolate and compare the laboratory results of the fixed bed treatment to the industrial pilot continuously treatment applied on the same product: reconstituted municipal solid waste, one of the most heterogynous solid wastes in mixture. The main targets were the sample mass reduction rate, the resulting gases composition, the samples mechanical behavior for different temperature levels, residential time, treatment atmosphere conditions and different steam flow rates (in the gasification process). The results were compared to an established reference – the incineration. The paper presents the research and results on the degradation mechanisms of MSW treated samples in those two equipments from the Science Division CNRS, Department of Industrial Methods, University of Technology Compiègne, France.


Fuel ◽  
2009 ◽  
Vol 88 (5) ◽  
pp. 955-958 ◽  
Author(s):  
Qin Wang ◽  
Jianhua Yan ◽  
Xin Tu ◽  
Yong Chi ◽  
Xiaodong Li ◽  
...  

2017 ◽  
Vol 757 ◽  
pp. 156-160
Author(s):  
Prodpran Siritheerasas ◽  
Phichayanan Waiyanate ◽  
Hidetoshi Sekiguchi ◽  
Satoshi Kodama

An investigation of the effect of the addition of char from agricultural residues on the torrefaction of moist municipal solid waste (MSW) pellets (40 wt.% moisture) was carried out in a microwave oven (500-800 W for 4-12 minutes). Char from agricultural residues, including corncob, palm shell, straw, and bagasse, was used as the microwave absorbers to enhance the absorption of microwave irradiation. It was found that the addition of char from bagasse yielded the lowest remaining mass (or mass yield) and volatile matter (VM) content, but the highest temperature and heating value, of the torrefied MSW pellet. Moisture in the MSW pellet with or without the addition of microwave absorber was completely removed after being torrefied for 8-12 minutes. The VM contents remained in the MSW pellets with the addition of microwave absorbers were lower than that in the MSW pellet without the addition of microwave absorber. The addition of microwave absorbers led to an increase in carbon (C) content but a decrease in oxygen (O) content of the torrefied MSW pellets, compared to those of the raw MSW pellet. The heating values of the torrefied MSW pellets with the addition of microwave absorbers were equivalent to that of sub-bituminous coal, enhanced from that of the raw MSW pellet, which was lower than that of lignite.


Sign in / Sign up

Export Citation Format

Share Document