Methanol production via integrated methane reforming and chemical looping combustion: Process simulation and techno-economic assessment

2021 ◽  
Vol 148 ◽  
pp. 1346-1356
Author(s):  
Babak Labbaf ◽  
Mojgan Tabatabaei ◽  
Ehsan Mostafavi ◽  
Mansour Tijani ◽  
Nader Mahinpey
2015 ◽  
Vol 32 (3) ◽  
pp. 373-382 ◽  
Author(s):  
Ming Luo ◽  
Shuzhong Wang ◽  
Jiabin Zhu ◽  
Longfei Wang ◽  
Mingming Lv

2017 ◽  
Author(s):  
Timothy J. Braun ◽  
David G. Sloan ◽  
David G. Turek ◽  
Steve A. Unker ◽  
Frederic Vitse

Author(s):  
Zheming Zhang ◽  
Ramesh Agarwal

Chemical-looping combustion holds significant promise as one of the next generation combustion technology for high-efficiency low-cost carbon capture from fossil fuel power plants. For thorough understanding of the chemical-looping combustion process and its successful implementation in CLC based industrial scale power plants, the development of high-fidelity modeling and simulation tools becomes essential for analysis and evaluation of efficient and cost effective designs. In this paper, multiphase flow simulations of coal-direct chemical-looping combustion process are performed using ANSYS Fluent CFD code. The details of solid-gas two-phase hydrodynamics in the CLC process are investigated by employing the Lagrangian particle-tracking approach called the discrete element method (DEM) for the movement and interaction of solid coal particles moving inside the gaseous medium created due to the combustion of coal particles with an oxidizer. The CFD/DEM simulations show excellent agreement with the experimental results obtained in a laboratory scale fuel reactor in cold flow conditions. More importantly, simulations provide important insights for making changes in fuel reactor configuration design that have resulted in significantly enhanced performance.


2008 ◽  
Vol 31 (12) ◽  
pp. 1754-1766 ◽  
Author(s):  
Z. G. Deng ◽  
R. Xiao ◽  
B. S. Jin ◽  
Q. L. Song ◽  
H. Huang

Author(s):  
N R McGlashan

The poor performance of internal combustion (IC) engines can be attributed to the departure from equilibrium in the combustion process. This departure is expressed numerically, as the difference between the working fluid's temperature and an ideal ‘combustion temperature’, calculated using a simple expression. It is shown that for combustion of hydrocarbons to be performed reversibly in a single reaction, impractically high working fluid temperatures are required — typically at least 3500 K. Chemical-looping combustion (CLC) is an alternative to traditional, single-stage combustion that performs the oxidation of fuels using two reactions, in separate vessels: the oxidizer and reducer. An additional species circulates between the oxidizer and reducer carrying oxygen atoms. Careful selection of this oxygen carrier can reduce the equilibrium temperature of the two redox reactions to below current metallurgical limits. Consequently, using CLC it is theoretically possible to approach a reversible IC engine without resorting to impractical temperatures. CLC also lends itself to carbon capture, as at no point is N2 from the air allowed to mix with the CO2 produced in the reduction process and therefore a post-combustion scrubbing plant is not required. Two thermodynamic criteria for selecting the oxygen carrier are established: the equilibrium temperature of both redox reactions should lie below present metallurgical limits. Equally, both reactions must be sufficiently hot to ensure that their reaction velocity is high. The key parameter determining the two reaction temperatures is the change in standard state entropy for each reaction. An analysis is conducted for an irreversible CLC system using two Rankine cycles to produce shaft work, giving an overall efficiency of 86.5 per cent. The analysis allows for irreversibilites in turbine, boiler, and condensers, but assumes reactions take place at equilibrium. However, using Rankine cycles in a CLC system is considered impractical because of the need for high-temperature, indirect heat exchange. An alternative arrangement, avoiding indirect heat exchange, is discussed briefly.


Energy ◽  
2015 ◽  
Vol 90 ◽  
pp. 1869-1877 ◽  
Author(s):  
William X. Meng ◽  
Subhodeep Banerjee ◽  
Xiao Zhang ◽  
Ramesh K. Agarwal

Sign in / Sign up

Export Citation Format

Share Document