Planets and minor planets CCD observations with the CMT and the CMASF

2008 ◽  
Vol 56 (14) ◽  
pp. 1893-1895
Author(s):  
José L. Muiños ◽  
Dafydd W. Evans ◽  
Miguel Vallejo ◽  
Fernando Belizón ◽  
Claudio Mallamaci ◽  
...  
1999 ◽  
Vol 173 ◽  
pp. 185-188
Author(s):  
Gy. Szabó ◽  
K. Sárneczky ◽  
L.L. Kiss

AbstractA widely used tool in studying quasi-monoperiodic processes is the O–C diagram. This paper deals with the application of this diagram in minor planet studies. The main difference between our approach and the classical O–C diagram is that we transform the epoch (=time) dependence into the geocentric longitude domain. We outline a rotation modelling using this modified O–C and illustrate the abilities with detailed error analysis. The primary assumption, that the monotonity and the shape of this diagram is (almost) independent of the geometry of the asteroids is discussed and tested. The monotonity enables an unambiguous distinction between the prograde and retrograde rotation, thus the four-fold (or in some cases the two-fold) ambiguities can be avoided. This turned out to be the main advantage of the O–C examination. As an extension to the theoretical work, we present some preliminary results on 1727 Mette based on new CCD observations.


1995 ◽  
Vol 167 ◽  
pp. 351-352
Author(s):  
O. P. Bykov

An application of the Classical Laplacian Method and new Pulkovo AMP-method for current asteroid orbit determinations is given. The CERES software package created at the Institute of Theoretical Astronomy (Russia) was applied to calculate (O-C)-differences for 200 numbered minor planets observed irregularly and quasisimultaneously in 1993 by CCD as well as by photographic techniques at 25 observatories (ESO, SERGA, Kitt Peak etc.). The accuracy of the observations was estimated by means of the standard error of the average (O-C) differences for each type of observation obtained by each telescope. As a whole the CCD-observations of the numbered minor planets are considerably more precise in comparison to the photographic ones. Some results are given in Table 1.


1996 ◽  
Vol 172 ◽  
pp. 153-164 ◽  
Author(s):  
B.G. Marsden

Somewhat more than a century after its introduction for the purpose of discovering minor planets, photography is now rapidly giving way to the CCD as the technology of choice for observing these bodies. A CCD has been used in scanning mode in the University of Arizona's ‘Spacewatch’ program for the discovery of minor planets since as long ago as 1984 (Gehrels 1984, Gehrels et al. 1986), while a CCD in stare mode was first applied as a matter of routine to an established observing program for astrometric follow-up in 1989—that at the Oak Ridge Observatory in Massachusetts (McCrosky 1990). After its initial 1984–1986 success, Spacewatch was modified with the help of a larger CCD and improved computer software and with the adoption of the particular mission of searching for NEOs, or minor planets (and comets) that pass close to the earth (Rabinowitz 1991, Scotti 1994). The Oak Ridge program utilizes a 1.5-m reflector, and the first CCD observations were reduced using the Astrographic Catalogue, the mainstay of the Oak Ridge photographic program back to its inauguration in 1972, as well as of other older photographic programs in which the fields observed were significantly less than 1° across. Within months, the availability, on CD-ROMs, of the STScI Guide Star Catalogue (Villard 1989) effectively consigned the venerable AC to the scrap-heap, and the rapid development of ready-made and relatively inexpensive CCD systems (e.g., di Cicco 1992) has recently increased the volume of CCD astrometry considerably, allowing it to be conveniently and reliably carried out, even by amateur astronomers. At the present time, very nearly 50 percent of the astrometric observations, typically 6000, published each month in the Minor Planet Center's Minor Planet Circulars are obtained by means of a CCD.


1966 ◽  
Vol 25 ◽  
pp. 197-222 ◽  
Author(s):  
P. J. Message

An analytical discussion of that case of motion in the restricted problem, in which the mean motions of the infinitesimal, and smaller-massed, bodies about the larger one are nearly in the ratio of two small integers displays the existence of a series of periodic solutions which, for commensurabilities of the typep+ 1:p, includes solutions of Poincaré'sdeuxième sortewhen the commensurability is very close, and of thepremière sortewhen it is less close. A linear treatment of the long-period variations of the elements, valid for motions in which the elements remain close to a particular periodic solution of this type, shows the continuity of near-commensurable motion with other motion, and some of the properties of long-period librations of small amplitude.To extend the investigation to other types of motion near commensurability, numerical integrations of the equations for the long-period variations of the elements were carried out for the 2:1 interior case (of which the planet 108 “Hecuba” is an example) to survey those motions in which the eccentricity takes values less than 0·1. An investigation of the effect of the large amplitude perturbations near commensurability on a distribution of minor planets, which is originally uniform over mean motion, shows a “draining off” effect from the vicinity of exact commensurability of a magnitude large enough to account for the observed gap in the distribution at the 2:1 commensurability.


1994 ◽  
Vol 144 ◽  
pp. 593-596
Author(s):  
O. Bouchard ◽  
S. Koutchmy ◽  
L. November ◽  
J.-C. Vial ◽  
J. B. Zirker

AbstractWe present the results of the analysis of a movie taken over a small field of view in the intermediate corona at a spatial resolution of 0.5“, a temporal resolution of 1 s and a spectral passband of 7 nm. These CCD observations were made at the prime focus of the 3.6 m aperture CFHT telescope during the 1991 total solar eclipse.


1999 ◽  
Vol 173 ◽  
pp. 189-192
Author(s):  
J. Tichá ◽  
M. Tichý ◽  
Z. Moravec

AbstractA long-term photographic search programme for minor planets was begun at the Kleť Observatory at the end of seventies using a 0.63-m Maksutov telescope, but with insufficient respect for long-arc follow-up astrometry. More than two thousand provisional designations were given to new Kleť discoveries. Since 1993 targeted follow-up astrometry of Kleť candidates has been performed with a 0.57-m reflector equipped with a CCD camera, and reliable orbits for many previous Kleť discoveries have been determined. The photographic programme results in more than 350 numbered minor planets credited to Kleť, one of the world's most prolific discovery sites. Nearly 50 per cent of them were numbered as a consequence of CCD follow-up observations since 1994.This brief summary describes the results of this Kleť photographic minor planet survey between 1977 and 1996. The majority of the Kleť photographic discoveries are main belt asteroids, but two Amor type asteroids and one Trojan have been found.


1990 ◽  
Author(s):  
KARL HENIZE ◽  
CHRISTINE O'NEILL ◽  
MARK MULROONEY

1988 ◽  
Vol 128 ◽  
pp. 55-60
Author(s):  
Arthur L. Whipple ◽  
Raynor L. Duncombe ◽  
Paul D. Hemenway

We have begun a program to establish a dynamical reference frame based on the motions of minor planets. The program will utilize observations from the Hubble Space Telescope, and will ultimately tie the HIPPARCOS reference system to a dynamical base. Thirty-four minor planets, 20 of which are suitable for observation with the Hubble Space Telescope, have been selected. Ground based observations, particularly crossing-point observations with long focus reflectors, have been initiated.A computer program to simultaneously solve for the corrections of the orbits of the 34 minor planets including the crossing-point observations, was successfully run. The observations are treated by the method of W. H. Jeffreys. Using simulated data, solutions with and without crossing point observations demonstrate the value of those observations to produce a homogeneous and coherent set of results.


Sign in / Sign up

Export Citation Format

Share Document