East European river runoff and Black Sea and Caspian Sea level changes as simulated within the Paleoclimate modeling intercomparison project

2007 ◽  
Vol 167-168 ◽  
pp. 40-48 ◽  
Author(s):  
Alexander Kislov ◽  
Pavel Toropov
Author(s):  
Nikolay Esin ◽  
Nikolay Esin ◽  
Vladimir Ocherednik ◽  
Vladimir Ocherednik

A mathematical model describing the change in the Black Sea level depending on the Aegean Sea level changes is presented in the article. Calculations have shown that the level of the Black Sea has been repeating the course of the Aegean Sea level for the last at least 6,000 years. And the level of the Black Sea above the Aegean Sea level in the tens of centimeters for this period of time.


2014 ◽  
pp. 145-155 ◽  
Author(s):  
Abdolmajid Naderi Beni ◽  
Hamid Lahijani ◽  
Morsen Pourkerman ◽  
Rahman Jokar ◽  
Muna Hosseindoust ◽  
...  

2020 ◽  
Vol 9 (3) ◽  
pp. 185 ◽  
Author(s):  
Nevin Avşar ◽  
Şenol Kutoğlu

Global mean sea level has been rising at an increasing rate, especially since the early 19th century in response to ocean thermal expansion and ice sheet melting. The possible consequences of sea level rise pose a significant threat to coastal cities, inhabitants, infrastructure, wetlands, ecosystems, and beaches. Sea level changes are not geographically uniform. This study focuses on present-day sea level changes in the Black Sea using satellite altimetry and tide gauge data. The multi-mission gridded satellite altimetry data from January 1993 to May 2017 indicated a mean rate of sea level rise of 2.5 ± 0.5 mm/year over the entire Black Sea. However, when considering the dominant cycles of the Black Sea level time series, an apparent (significant) variation was seen until 2014, and the rise in the mean sea level has been estimated at about 3.2 ± 0.6 mm/year. Coastal sea level, which was assessed using the available data from 12 tide gauge stations, has generally risen (except for the Bourgas Station). For instance, from the western coast to the southern coast of the Black Sea, in Constantza, Sevastopol, Tuapse, Batumi, Trabzon, Amasra, Sile, and Igneada, the relative rise was 3.02, 1.56, 2.92, 3.52, 2.33, 3.43, 5.03, and 6.94 mm/year, respectively, for varying periods over 1922–2014. The highest and lowest rises in the mean level of the Black Sea were in Poti (7.01 mm/year) and in Varna (1.53 mm/year), respectively. Measurements from six Global Navigation Satellite System (GNSS) stations, which are very close to the tide gauges, also suggest that there were significant vertical land movements at some tide gauge locations. This study confirmed that according to the obtained average annual phase value of sea level observations, seasonal sea level variations in the Black Sea reach their maximum annual amplitude in May–June.


2011 ◽  
Vol 302 (3-4) ◽  
pp. 415-434 ◽  
Author(s):  
S.A.G. Leroy ◽  
H.A.K. Lahijani ◽  
M. Djamali ◽  
A. Naqinezhad ◽  
M.V. Moghadam ◽  
...  

1999 ◽  
Vol 26 (3) ◽  
pp. 169-178 ◽  
Author(s):  
E.A. BALDINA ◽  
J. DE LEEUW ◽  
A.K. GORBUNOV ◽  
I.A. LABUTINA ◽  
A.F. ZHIVOGLIAD ◽  
...  

During the twentieth century the level of the Caspian Sea dropped from -26 m (1930) to -29 m (1977) below global sea level and subsequently rose again to -26.66 m in 1996. We aimed to describe responses of the vegetation in the lower Volga Delta to these substantial sea-level changes using an analysis of historic vegetation maps produced by aerial photography and satellite imagery.The sea level drop in the earlier part of the century was followed by rapid progression of the vegetation. The subsequent rapid sea-level rise in the 1980s did however not result in similarly rapid regression of the vegetation. This partial irreversibility of the vegetation response to sea-level change is explained by the wide flooding tolerance of the major emergent species, namely Phragmites australis. Floating vegetation increased in extent, most likely due to the increased availability of more favourable conditions, particularly for Nelumbo nucifera, a tropical plant reaching its northernmost distribution in the Volga Delta. This species increased in distribution from 3.5 ha in the 1930s throughout the entire Volga Delta to several thousands of hectares in the Astrakhanskiy Biosphere Reserve alone in the 1980s. The reported sea-level changes swept the ecosystems in the Astrakhanskiy Biosphere Reserve back and forth within the Reserve boundaries. At longer time scales, ten-fold greater sea-level change has been reported. The ecosystems for which the Reserve is renowned might be pushed completely out of the Reserve under these conditions. We therefore question whether the current Reserve will be sufficiently large to guarantee conservation of the biota in the lower Volga Delta at longer time scales.


2012 ◽  
Vol 9 (11) ◽  
pp. 16663-16704
Author(s):  
S. A. G. Leroy ◽  
H. A. K. Lahijani ◽  
J.-L. Reyss ◽  
F. Chalié ◽  
S. Haghani ◽  
...  

Abstract. We analysed dinoflagellate cyst assemblages in four short sediment cores, two of them dated by radionuclides, taken in the south basin of the Caspian Sea. The interpretation of the four sequences is supported by a collection of 27 lagoonal or marine surface sediment samples. A sharp increase in the biomass of the dinocyst occurs after 1967, especially owing to Lingulodinium machaerophorum. Considering nine other cores covering parts or the whole of Holocene, this species started to develop in the Caspian Sea only during the last three millennia. By analysing instrumental data and collating existing reconstructions of sea level changes over the last few millennia, we show that the main forcing of the increase of L. machaerophorum percentages and of the recent dinocyst abundance is global climate change, especially sea surface temperature increase. Sea level fluctuations likely have a minor impact. We argue that the Caspian Sea has entered the Anthropocene.


2021 ◽  
Author(s):  
Omid Memarian Sorkhabi

Abstract Today, despite the satellite altimetry, it is possible to determine the average sea level and determine the sea level change with high accuracy. In this research, data from 1992-2017 TOPEX / Poseidon, Jason1, OSTM and Jason3 altimeter satellites in the Caspian Sea have been used. The results show that every year the average of 75 mm of the Caspian Sea water level decreases and the downward trend.


2021 ◽  
Author(s):  
Omid Memarian Sorkhabi

Abstract Today, despite the satellite altimetry, it is possible to determine the average sea level and determine the sea level change with high accuracy. In this research, data from 1992-2017 TOPEX / Poseidon, Jason1, OSTM and Jason3 altimeter satellites in the Caspian Sea have been used. The results show that every year the average of 75 mm of the Caspian Sea water level decreases and the downward trend.


Sign in / Sign up

Export Citation Format

Share Document