paleoclimate modeling
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 4)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 17 (4) ◽  
pp. 1727-1733 ◽  
Author(s):  
Andre Berger

Abstract. The history of the long-term variations in the astronomical elements used in paleoclimate research shows that, contrary to what might be thought, Milutin Milankovitch is not the father of the astronomical theory but he is definitely the father of paleoclimate modeling. He did not calculate these long-term variations himself but used them extensively for calculating the “secular march” of incoming solar radiation. He advanced our understanding of Quaternary climate variations by two important and original contributions fully described in his Canon of insolation. These are the definition and use of caloric seasons and the concept of the “mathematical climate”. How his mathematical model allowed him to give the caloric summer and winter insolation a climatological meaning is illustrated.


2021 ◽  
Author(s):  
Xiangyu Li ◽  
Zhongshi Zhang ◽  
Ran Zhang ◽  
Qing Yan

<p>Geological evidence shows that the Asian inland environment experienced enhanced aridity from the Early to the Late Eocene. The underlying mechanism for this enhanced Eocene aridity in the Asian inland is still not well illustrated and varies between global cooling and early Tibetan Plateau uplift. In this report, we evaluate the climate impact of three factors, global cooling, topographic uplift and land–sea reorganization, on the enhanced Eocene aridity in Asian inland, in the perspective view from paleoclimate modeling. Paleoclimate modeling supports the Eocene aridification in Asian inland explored by paleoclimate reconstruction. Both the early uplift of Tibetan Plateau and global cooling induced by atmospheric CO<sub>2</sub> reduction contributed to the enhanced aridity in Asian inland in the late Eocene. The Eocene land sea redistribution caused the precipitation increase in Asian inland and hence didn’t contribute to the enhanced aridity there. The uplift of the central Tibetan Plateau during the early stage of the India–Asia collision is emphasized more to be responsible for the long-term Asian inland aridification during the Eocene, playing at least an equally important role as the global cooling induced by decrease in atmospheric CO<sub>2</sub>. The variation of atmospheric CO<sub>2</sub> is likely more important in modulating the regional aridity, leading to the short-term fluctuations in this Eocene Asian inland aridification.</p>


2021 ◽  
Vol 17 (1) ◽  
pp. 63-94 ◽  
Author(s):  
Bette L. Otto-Bliesner ◽  
Esther C. Brady ◽  
Anni Zhao ◽  
Chris M. Brierley ◽  
Yarrow Axford ◽  
...  

Abstract. The modeling of paleoclimate, using physically based tools, is increasingly seen as a strong out-of-sample test of the models that are used for the projection of future climate changes. New to the Coupled Model Intercomparison Project (CMIP6) is the Tier 1 Last Interglacial experiment for 127 000 years ago (lig127k), designed to address the climate responses to stronger orbital forcing than the midHolocene experiment, using the same state-of-the-art models as for the future and following a common experimental protocol. Here we present a first analysis of a multi-model ensemble of 17 climate models, all of which have completed the CMIP6 DECK (Diagnostic, Evaluation and Characterization of Klima) experiments. The equilibrium climate sensitivity (ECS) of these models varies from 1.8 to 5.6 ∘C. The seasonal character of the insolation anomalies results in strong summer warming over the Northern Hemisphere continents in the lig127k ensemble as compared to the CMIP6 piControl and much-reduced minimum sea ice in the Arctic. The multi-model results indicate enhanced summer monsoonal precipitation in the Northern Hemisphere and reductions in the Southern Hemisphere. These responses are greater in the lig127k than the CMIP6 midHolocene simulations as expected from the larger insolation anomalies at 127 than 6 ka. New synthesis for surface temperature and precipitation, targeted for 127 ka, have been developed for comparison to the multi-model ensemble. The lig127k model ensemble and data reconstructions are in good agreement for summer temperature anomalies over Canada, Scandinavia, and the North Atlantic and for precipitation over the Northern Hemisphere continents. The model–data comparisons and mismatches point to further study of the sensitivity of the simulations to uncertainties in the boundary conditions and of the uncertainties and sparse coverage in current proxy reconstructions. The CMIP6–Paleoclimate Modeling Intercomparison Project (PMIP4) lig127k simulations, in combination with the proxy record, improve our confidence in future projections of monsoons, surface temperature, and Arctic sea ice, thus providing a key target for model evaluation and optimization.


Oceanography ◽  
2020 ◽  
Vol 33 (2) ◽  
Author(s):  
Edward Gasson ◽  
◽  
Benjamin Keisling

2018 ◽  
Vol 1436 (1) ◽  
pp. 54-69 ◽  
Author(s):  
Patrick Ludwig ◽  
Juan J. Gómez-Navarro ◽  
Joaquim G. Pinto ◽  
Christoph C. Raible ◽  
Sebastian Wagner ◽  
...  

2014 ◽  
Vol 32 (2) ◽  
pp. 250-275 ◽  
Author(s):  
Dabang Jiang ◽  
Ge Yu ◽  
Ping Zhao ◽  
Xing Chen ◽  
Jian Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document