scholarly journals Characterization and survival of broad-spectrum biocontrol agents against phytopathogenic fungi

Author(s):  
Saba Azeem ◽  
Syed Inayatullah Agha ◽  
Neelam Jamil ◽  
Bushra Tabassum ◽  
Shan Ahmed ◽  
...  
2010 ◽  
Vol 65 (7-8) ◽  
pp. 437-439 ◽  
Author(s):  
Hui Xu ◽  
Qin Wang ◽  
Wen-Bin Yang

Nine indole derivatives were evaluated in vitro against Fusarium graminearum, Alternaria alternata, Helminthosporium sorokinianum, Pyricularia oryzae, Fusarium oxysporum f. sp. vasinfectum, Fusarium oxysporum f. sp. cucumarinum, and Alternaria brassicae. Most of the compounds were found to possess antifungal activities. Especially compounds 2, 5, 8, and 9 exhibited broad-spectrum antifungal activities against the above-mentioned seven phytopathogenic fungi, and showed more potent activities than hymexazole, a commercial agricultural fungicide.


2010 ◽  
Vol 65 (7-8) ◽  
pp. 433-436
Author(s):  
Hui Xu ◽  
Huan Qu

Several 2,6-bis-(un)substituted phenoxymethylpyridines were synthesized and evaluated in vitro against Fusarium graminearum, Helminthosporium sorokinianum, Alternaria brassicae, Alternaria alternata, and Fusarium oxysporum f. sp. vasinfectum. Among all derivatives, compound 3 a exhibited a broad-spectrum antifungal activity against the five phytopathogenic fungi.


2020 ◽  
Vol 8 (6) ◽  
pp. 817 ◽  
Author(s):  
Raja Asad Ali Khan ◽  
Saba Najeeb ◽  
Shaukat Hussain ◽  
Bingyan Xie ◽  
Yan Li

Phytopathogenic fungi, causing significant economic and production losses, are becoming a serious threat to global food security. Due to an increase in fungal resistance and the hazardous effects of chemical fungicides to human and environmental health, scientists are now engaged to explore alternate non-chemical and ecofriendly management strategies. The use of biocontrol agents and their secondary metabolites (SMs) is one of the potential approaches used today. Trichoderma spp. are well known biocontrol agents used globally. Many Trichoderma species are the most prominent producers of SMs with antimicrobial activity against phytopathogenic fungi. Detailed information about these secondary metabolites, when grouped together, enhances the understanding of their efficient utilization and further exploration of new bioactive compounds for the management of plant pathogenic fungi. The current literature provides the information about SMs of Trichoderma spp. in a different context. In this review, we summarize and group different antifungal SMs of Trichoderma spp. against phytopathogenic fungi along with a comprehensive overview of some aspects related to their chemistry and biosynthesis. Moreover, a brief overview of the biosynthesis pathway, action mechanism, and different approaches for the analysis of SMs and the factors affecting the regulation of SMs in Trichoderma is also discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yan Peng ◽  
Shi J. Li ◽  
Jun Yan ◽  
Yong Tang ◽  
Jian P. Cheng ◽  
...  

Phytopathogenic fungi decrease crop yield and quality and cause huge losses in agricultural production. To prevent the occurrence of crop diseases and insect pests, farmers have to use many synthetic chemical pesticides. The extensive use of these pesticides has resulted in a series of environmental and ecological problems, such as the increase in resistant weed populations, soil compaction, and water pollution, which seriously affect the sustainable development of agriculture. This review discusses the main advances in research on plant-pathogenic fungi in terms of their pathogenic factors such as cell wall-degrading enzymes, toxins, growth regulators, effector proteins, and fungal viruses, as well as their application as biocontrol agents for plant pests, diseases, and weeds. Finally, further studies on plant-pathogenic fungal resources with better biocontrol effects can help find new beneficial microbial resources that can control diseases.


2021 ◽  
Vol 11 ◽  
Author(s):  
Md. Arshad Ali ◽  
Yang Lou ◽  
Rahila Hafeez ◽  
Xuqing Li ◽  
Afsana Hossain ◽  
...  

Bacteria belonging to the genus Paenibacillus were frequently isolated from legume nodules. The nodule-inhabiting Paenibacillus as a resource of biocontrol and plant growth-promoting endophytes has rarely been explored. This study explored the nodule-inhabiting Paenibacillus’ antifungal activities and biocontrol potentials against broad-spectrum important phytopathogenic fungi. We collected strains which were isolated from nodules of Robinia pseudoacacia, Dendrolobium triangulare, Ormosia semicastrata, Cicer arietinum, Acacia crassicarpa, or Acacia implexa and belong to P. peoriae, P. kribbensis, P. endophyticus, P. enshidis, P. puldeungensis, P. taichungensis, or closely related to P. kribbensis, or P. anseongense. These nodule-inhabiting Paenibacillus showed diverse antagonistic activities against five phytopathogenic fungi (Fusarium graminearum, Magnaporthe oryzae, Rhizoctonia solani, Sclerotinia sclerotiorum, and Botrytis cinerea). Six strains within the P. polymyxa complex showed broad-spectrum and potent activities against all the five pathogens, and produced multiple hydrolytic enzymes, siderophores, and lipopeptide fusaricidins. Fusaricidins are likely the key antimicrobials responsible for the broad-spectrum antifungal activities. The nodule-inhabiting strains within the P. polymyxa complex were able to epiphytically and endophytically colonize the non-host wheat plants, produce indole acetic acids (IAA), and dissolve calcium phosphate and calcium phytate. P. peoriae strains RP20, RP51, and RP62 could fix N2. P. peoriae RP51 and Paenibacillus sp. RP31, which showed potent plant colonization and plant growth-promotion competence, effectively control fungal infection in planta. Genome mining revealed that all strains (n = 76) within the P. polymyxa complex contain ipdC gene encoding indole-3-pyruvate decarboxylase for biosynthesis of IAA, 96% (n = 73) contain the fus cluster for biosynthesis of fusaricidins, and 43% (n = 33) contain the nif cluster for nitrogen fixation. Together, our study highlights that endophytic strains within the P. polymyxa complex have a high probability to be effective biocontrol agents and biofertilizers and we propose an effective approach to screen strains within the P. polymyxa complex.


2017 ◽  
pp. 231-240 ◽  
Author(s):  
Nemanja Spremo ◽  
Kristina Tesanovic ◽  
Milana Rakic ◽  
Ljiljana Janjusevic ◽  
Maja Ignjatov ◽  
...  

During the last decades, intensive application of synthetic fungicides in the agricultural crop protection practice caused growing concern for the existence of toxic chemical residues in food as well as in the whole environment. Instead of using synthetic fungicides, it is suggested that crop protection be carried out by using preparations based on compounds of natural origin (secondary metabolites of plants or microorganisms, including macrofungi from Basidiomycota) as biological control agents. The potential of macrofungal species as biocontrol agents was analyzed in this investigation of eight autochthonous species from different locations in Serbia. Both the terricolous species: Coprinus comatus, Coprinellus truncorum, Amanita strobiliformis, Hydnum repandum and the lignicolous species: Flammulina velutipes, Stereum subtomentosum, Trametes versicolor and Bjerkandera adusta were examined, with an aim to detect some novel sources of antifungal agents. This study surveyed antifungal activity of selected macrofungal extracts (MeOH, EtOH and CHCl3) against phytopathogenic Fusarium and Alternaria strains isolated from garlic, soybean and rice: F. proliferatum, F. verticillioides, F. proliferatum, F. graminearum and A. padwickii. Microdilution method in 96 well microplates was applied for the estimation of antifungal effects of macrofungi extracts in the range from 24.75 to 198.00 mg/ml and determination of minimal inhibitory (MIC) and minimal fungicidal concentration (MFC). EtOH extract of mychorhizal species H. repandum showed antifungal activity against all analyzed phytopathogenic strains, with the strongest effect on Fusarium strains (MIC 24.75 mg/ml; MFC 24.75 mg/ml). Among others, MeOH extracts of S. subtomentosum and C. micaceus showed similar effects while only B. adusta showed slight effect on Fusarium strains (MIC 24.75-99.00 mg/ml; MFC 24.75-99.00 mg/ml) and none effect on A. padwickii. The obtained results indicate the possibility of using examined extracts as efficient antifungal agents and provide the basis for the new formulations of biocontrol agents against phytopathogenic fungi in the future.


2013 ◽  
Vol 162 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Simona M. Sanzani ◽  
Maria G. Li Destri Nicosia ◽  
Roberto Faedda ◽  
Santa O. Cacciola ◽  
Leonardo Schena

mSphere ◽  
2021 ◽  
Author(s):  
Adrien Biessy ◽  
Amy Novinscak ◽  
Renée St-Onge ◽  
Geneviève Léger ◽  
Antoine Zboralski ◽  
...  

Plant-beneficial phenazine-producing Pseudomonas spp. are effective biocontrol agents, thanks to the broad-spectrum antibiotic activity of the phenazine antibiotics they produce. These bacteria have received considerable attention over the last 20 years, but most studies have focused only on the ability of a few genotypes to inhibit the growth of a limited number of plant pathogens.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Yerly Mira ◽  
Darío Castañeda ◽  
Juan Morales ◽  
Luis Patiño

Abstract Background Use of phytopathogenic fungi for the biocontrol of weeds represents a promising path in the search for new management alternatives that allow reducing negative effects on the environment and the generation of biotypes having resistance to herbicides. The first step in developing weed biological control programs is to determine the plants and their natural enemies with the highest affinity and potential to achieve effective biocontrol. The objective of the present study was to evaluate the phytopathogenic potential of fungal isolates on four economically important weeds including: Rumex crispus L., Digitaria horizontalis Willd, Persicaria nepalensis (Meisn.) Miyabe, and Thunbergia alata Bojer ex Sims, as a possible biocontrol agent. Results Morphological and molecular identification of nine phytopathogenic isolates of weeds was achieved, according to the sequencing of the ITS, β-Tub2, and TEF1-α regions. Pathogenicity of the following species on original hosts was confirmed: Colletotrichum cigarro, Epicoccum draconis, and Didymella rumicicola on R. crispus; Bipolaris sp., on D. horizontalis; Bipolaris zeicola, Phialemoniopsis curvata, and Stemphylium beticola on P. nepalensis and, Alternaria thunbergiae and Nigrospora sphaerica on T. alata. These could be, fairly, considered the first worldwide reports of such interactions, except for A. thunbergiae and Bipolaris sp. The most virulent interactions according to the AUDPC value corresponded to (R. crispus × D. rumicicola), (D. horizontalis × Bipolaris sp.), (P. nepalensis × S. beticola) and (T. alata × A. thunbergiae), with an incidence of 100%. Conclusion These strains were proposed for future research as potential biocontrol agents, which represented a great resource for the possible generation of new bio-herbicides.


Sign in / Sign up

Export Citation Format

Share Document