scholarly journals Slope and Aspect Effects on Seedbed Microclimate and Germination Timing of Fall-Planted Seeds

2021 ◽  
Vol 75 ◽  
pp. 58-67
Author(s):  
Alex R. Boehm ◽  
Stuart P. Hardegree ◽  
Nancy F. Glenn ◽  
Patrick A. Reeves ◽  
Corey A. Moffet ◽  
...  
Keyword(s):  
Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 246
Author(s):  
Paul M. Severns ◽  
Melinda Guzman-Martinez

New plant pathogen invasions typified by cryptic disease symptoms or those appearing sporadically in time and patchily in space, might go largely unnoticed and not taken seriously by ecologists. We present evidence that the recent invasion of Pyrenopeziza plantaginis (Dermateaceae) into the Pacific Northwest USA, which causes foliar necrosis in the fall and winter on Plantago lanceolata (plantain), the primary (non-native) foodplant for six of the eight extant Taylor’s checkerspot butterfly populations (Euphydryas editha taylori, endangered species), has altered eco-evolutionary foodplant interactions to a degree that threatens butterfly populations with extinction. Patterns of butterfly, larval food plant, and P. plantaginis disease development suggested the ancestral relationship was a two-foodplant system, with perennial Castilleja spp. supporting oviposition and pre-diapause larvae, and the annual Collinsia parviflora supporting post-diapause larvae. Plantain, in the absence of P. plantaginis disease, provided larval food resources throughout all butterfly life stages and may explain plantain’s initial adoption by Taylor’s checkerspot. However, in the presence of severe P. plantaginis disease, plantain-dependent butterfly populations experience a six-week period in the winter where post-diapause larvae lack essential plantain resources. Only C. parviflora, which is rare and competitively inferior under present habitat conditions, can fulfill the post-diapause larval feeding requirements in the presence of severe P. plantaginis disease. However, a germination timing experiment suggested C. parviflora to be suitably timed for only Washington Taylor’s checkerspot populations. The recent invasion by P. plantaginis appears to have rendered the ancestrally adaptive acquisition of plantain by Taylor’s checkerspot an unreliable, maladaptive foodplant interaction.


2005 ◽  
Vol 15 (3) ◽  
pp. 175-187 ◽  
Author(s):  
Kathleen Donohue

This paper discusses how field and laboratory experiments, using a variety of genetic material, can be combined to investigate the genetic basis of germination under realistic ecological conditions, and it reviews some of our recent work on germination phenology ofArabidopsis thalianain the field. Our results indicate that the genetic basis of germination depends on the environment. In particular, the conditions during seed maturation interact with post-dispersal environmental factors to determine germination phenology, and these interactions have a genetic basis. Therefore genetic studies of germination need to consider carefully the environment – both during seed maturation and after dispersal – in which the experiments are conducted in order to characterize genetic pathways involved with germination in the field. Laboratory studies that explicitly manipulate ecologically relevant environmental factors can be combined with manipulative field studies. These studies can identify the particular environmental cues to which seeds respond in the field and characterize the genetic basis of germination responses to those cues. In addition, a variety of genetic material – including mutant and transgenic lines, intact natural genotypes, recombinant genotypes, and near isogenic lines – can be used in field studies as tools to characterize genetic pathways involved in germination schedules under natural ecological conditions.


2022 ◽  
Author(s):  
Hanna ten Brink ◽  
Thomas Ray Haaland ◽  
Oystein Hjorthol Opedal

The common occurrence of within-population variation in germination behavior and associated traits such as seed size has long fascinated evolutionary ecologists. In annuals, unpredictable environments are known to select for bet-hedging strategies causing variation in dormancy duration and germination strategies. Variation in germination timing and associated traits is also commonly observed in perennials, and often tracks gradients of environmental predictability. Although bet-hedging is thought to occur less frequently in long-lived organisms, these observations suggest a role of bet-hedging strategies in perennials occupying unpredictable environments. We use complementary numerical and evolutionary simulation models of within- and among-individual variation in germination behavior in seasonal environments to show how bet-hedging interacts with density dependence, life-history traits, and priority effects due to competitive differences among germination strategies. We reveal substantial scope for bet-hedging to produce variation in germination behavior in long-lived plants, when "false starts" to the growing season results in either competitive advantages or increased mortality risk for alternative germination strategies. Additionally, we find that two distinct germination strategies can evolve and coexist through negative frequency-dependent selection. These models extend insights from bet-hedging theory to perennials and explore how competitive communities may be affected by ongoing changes in climate and seasonality patterns.


2020 ◽  
Vol 17 (170) ◽  
pp. 20200350
Author(s):  
Zak Frentz ◽  
Jonathan Dworkin

Spore-forming bacteria modulate their metabolic rate by over five orders of magnitude as they transition between dormant spores and vegetative cells and thus represent an extreme case of phenotypic variation. During environmental changes in nutrient availability, clonal populations of spore-forming bacteria exhibit individual differences in cell fate, the timing of phenotypic transitions and gene expression. One potential source of this variability is metabolic heterogeneity, but this has not yet been measured, as existing single-cell methods are not easily applicable to spores due to their small size and strong autofluorescence. Here, we use the bacterial bioluminescence system and a highly sensitive microscope to measure metabolic dynamics in thousands of B. subtilis spores as they germinate. We observe and quantitate large variations in the bioluminescence dynamics across individual spores that can be decomposed into contributions from variability in germination timing, the amount of endogenously produced luminescence substrate and the intracellular reducing power. This work shows that quantitative measurement of spore metabolism is possible and thus it opens avenues for future study of the thermodynamic nature of dormant states.


1995 ◽  
Vol 82 (3) ◽  
pp. 377-389 ◽  
Author(s):  
S. E. Meyer ◽  
S. G. Kitchen ◽  
S. L. Carlson

AoB Plants ◽  
2020 ◽  
Vol 12 (3) ◽  
Author(s):  
Matin Miryeganeh

Abstract In a recent publication, we proposed that adjusting lifespan in order to synchronize senescence is important for timing of reproduction, and we quantified the synchrony of reproductive timing relative to germination timing. Here, in a second sequential seeding experiment (SSE), the germination timing of Arabidopsis thaliana accessions was manipulated and plants were then grown under two different temperature regimes. Life stage traits of plants in each temperature regime were analysed and it was evaluated whether the cohorts were grouped according to age and/or environmental conditions. While flowering-related traits showed desynchrony among cohorts, striking synchrony in the timing of senescence among cohorts for each group was found. A quantitative trait locus (QTL) analysis using a genotyped population of ‘Cvi/Ler’ recombinant inbred lines (RILs) was then conducted. Novel and known loci were assigned to flowering and senescence timing. However, senescence synchrony resulted in low variation in senescence time and weak QTL detection for flowering termination. Overlapping flowering and senescence genes with loci affecting either of those traits were found and suggest a potential interdependency of reproductive traits.


1982 ◽  
Vol 92 (2) ◽  
pp. 173-182 ◽  
Author(s):  
ROBERT K. CAMPBELL ◽  
STANLEY M. RITLAND

Sign in / Sign up

Export Citation Format

Share Document