scholarly journals Synchronization of senescence and desynchronization of flowering in Arabidopsis thaliana

AoB Plants ◽  
2020 ◽  
Vol 12 (3) ◽  
Author(s):  
Matin Miryeganeh

Abstract In a recent publication, we proposed that adjusting lifespan in order to synchronize senescence is important for timing of reproduction, and we quantified the synchrony of reproductive timing relative to germination timing. Here, in a second sequential seeding experiment (SSE), the germination timing of Arabidopsis thaliana accessions was manipulated and plants were then grown under two different temperature regimes. Life stage traits of plants in each temperature regime were analysed and it was evaluated whether the cohorts were grouped according to age and/or environmental conditions. While flowering-related traits showed desynchrony among cohorts, striking synchrony in the timing of senescence among cohorts for each group was found. A quantitative trait locus (QTL) analysis using a genotyped population of ‘Cvi/Ler’ recombinant inbred lines (RILs) was then conducted. Novel and known loci were assigned to flowering and senescence timing. However, senescence synchrony resulted in low variation in senescence time and weak QTL detection for flowering termination. Overlapping flowering and senescence genes with loci affecting either of those traits were found and suggest a potential interdependency of reproductive traits.

2020 ◽  
Vol 10 (11) ◽  
pp. 4215-4226
Author(s):  
Margi Hartanto ◽  
Ronny V. L. Joosen ◽  
Basten L. Snoek ◽  
Leo A. J. Willems ◽  
Mark G. Sterken ◽  
...  

Seed germination is characterized by a constant change of gene expression across different time points. These changes are related to specific processes, which eventually determine the onset of seed germination. To get a better understanding on the regulation of gene expression during seed germination, we performed a quantitative trait locus mapping of gene expression (eQTL) at four important seed germination stages (primary dormant, after-ripened, six-hour after imbibition, and radicle protrusion stage) using Arabidopsis thaliana Bay x Sha recombinant inbred lines (RILs). The mapping displayed the distinctness of the eQTL landscape for each stage. We found several eQTL hotspots across stages associated with the regulation of expression of a large number of genes. Interestingly, an eQTL hotspot on chromosome five collocates with hotspots for phenotypic and metabolic QTL in the same population. Finally, we constructed a gene co-expression network to prioritize the regulatory genes for two major eQTL hotspots. The network analysis prioritizes transcription factors DEWAX and ICE1 as the most likely regulatory genes for the hotspot. Together, we have revealed that the genetic regulation of gene expression is dynamic along the course of seed germination.


2019 ◽  
Vol 110 (4) ◽  
pp. 467-478 ◽  
Author(s):  
Michelle C D’Aguillo ◽  
Brianne R Edwards ◽  
Kathleen Donohue

AbstractThe timing of seed germination determines the environment experienced by a plant’s most vulnerable life stage—the seedling. Germination is environmentally cued, and genotypes can differ in their sensitivity to environmental cues. When genotypes differ in their response to cues, and when cues accurately predict the postgermination environment, the postgermination environment experienced by seedlings can itself have a genetic basis and potential to evolve. We tested for genetic differences in the postgermination environment using Arabidopsis thaliana genotypes that vary in seed dormancy, a trait known to alter germination time. We dispersed seeds into the field in 5 seasonal cohorts over 1.5 years, observed germination timing for 5297 individuals, and measured the soil temperature and moisture experienced by individuals throughout their life cycle. We found that genotypes differed in the environments they experienced during seedling establishment. This environmental variation occurred because genotypes differed in their environmental sensitivity to germination cues, and pregermination cues were correlated with postgermination environments. Seeds exhibited temporal habitat selection by germinating into a nonrandom subset of environmental conditions available, and seed dormancy increased the consistency of habitat selection. Strikingly, the postgermination environment affected fitness by altering the probability of seedling survival such that genotypes that engaged in stronger habitat selection were less likely to reach reproduction. Our results suggest that environmentally cued development may be a widespread mechanism by which genotypes can differ in the environment they experience, introducing the possibility that the environment itself can be inherited and can evolve.


Genetics ◽  
2000 ◽  
Vol 155 (1) ◽  
pp. 369-378 ◽  
Author(s):  
Ruth G Shaw ◽  
Diane L Byers ◽  
Elizabeth Darmo

Abstract A study of spontaneous mutation in Arabidopsis thaliana was initiated from a single inbred Columbia founder; 120 lines were established and advanced 17 generations by single-seed descent. Here, we report an assay of reproductive traits in a random set of 40 lines from generations 8 and 17, grown together at the same time with plants representing generation 0. For three reproductive traits, mean number of seeds per fruit, number of fruits, and dry mass of the infructescence, the means did not differ significantly among generations. Nevertheless, by generation 17, significant divergence among lines was detected for each trait, indicating accumulation of mutations in some lines. Standardized measures of mutational variance accord with those obtained for other organisms. These findings suggest that the distribution of mutational effects for these traits is approximately symmetric, in contrast to the usual assumption that mutations have predominantly negative effects on traits directly related to fitness. Because distinct generations were grown contemporaneously, each line was represented by three sublines, and seeds were equal in age, these estimates are free of potentially substantial sources of bias. The finding of an approximately symmetric distribution of mutational effects invalidates the standard approach for inferring properties of spontaneous mutation and necessitates further development of more general approaches that avoid restrictions on the distribution of mutational effects.


2020 ◽  
Vol 110 (2) ◽  
pp. 440-446 ◽  
Author(s):  
Yueqiang Leng ◽  
Mingxia Zhao ◽  
Jason Fiedler ◽  
Antonín Dreiseitl ◽  
Shiaoman Chao ◽  
...  

Spot blotch (SB) caused by Bipolaris sorokiniana and powdery mildew (PM) caused by Blumeria graminis f. sp. hordei are two important diseases of barley. To map genetic loci controlling susceptibility and resistance to these diseases, a mapping population consisting of 138 recombinant inbred lines (RILs) was developed from the cross between Bowman and ND5883. A genetic map was constructed for the population with 852 unique single nucleotide polymorphism markers generated by sequencing-based genotyping. Bowman and ND5883 showed distinct infection responses at the seedling stage to two isolates (ND90Pr and ND85F) of Bipolaris sorokiniana and one isolate (Race I) of Blumeria graminis f. sp. hordei. Genetic analysis of the RILs revealed that one major gene (Scs6) controls susceptibility to Bipolaris sorokiniana isolate ND90Pr, and another major gene (Mla8) confers resistance to Blumeria graminis f. sp. hordei isolate Race I, respectively. Scs6 was mapped on chromosome 1H of Bowman, as previously reported. Mla8 was also mapped to the short arm of 1H, which was tightly linked but not allelic to the Rcs6/Scs6 locus. Quantitative trait locus (QTL) analysis identified two QTLs, QSbs-1H-P1 and QSbs-7H-P1, responsible for susceptibility to spot blotch caused by Bipolaris sorokiniana isolate ND85F in ND5883, which are located on chromosome 1H and 7H, respectively. QSbs-7H-P1 was mapped to the same region as Rcs5, whereas QSbs-1H-P1 may represent a novel allele conferring seedling stage susceptibility to isolate ND85F. Identification and molecular mapping of the loci for SB susceptibility and PM resistance will facilitate development of barley cultivars with resistance to the diseases.


2006 ◽  
Vol 4 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Hongyan Liu ◽  
Hanwei Mei ◽  
Xinqiao Yu ◽  
Guihua Zou ◽  
Guolan Liu ◽  
...  

Drought tolerance (DT) is a very complex trait. For the purpose of developing DT rice cultivars, a research programme was initiated in 1997 in China, consisting of four coherent parts: the development of a DT field screen facility and evaluation standard; the collection, evaluation and enhancement of DT rice resources; DT gene/quantitative trait locus (QTL) discovery; and DT rice breeding. More than 2000 rice accessions, mostly from China, were collected and evaluated in a new DT screening facility with a powerful water management system. Eighty-six entries were selected to serve as a core DT collection. A set of 187 recombinant inbred lines was developed for the genetic mapping of DT and high yield-related QTL under drought conditions. Several DT rice cultivars adapted to southern and central China were released. DT rice CMS lines were developed and distributed to most parts of China to encourage the development of DT or water-saving hybrid rice.


2019 ◽  
pp. 215-220
Author(s):  
X. de Badts ◽  
V. Dumas ◽  
N. Jaegli ◽  
L. Ley ◽  
D. Merdinoglu ◽  
...  

2008 ◽  
Vol 90 (6) ◽  
pp. 481-491 ◽  
Author(s):  
YINGPENG HAN ◽  
WEILI TENG ◽  
DESHENG SUN ◽  
YUPING DU ◽  
LIJUAN QIU ◽  
...  

SummaryThe accumulation of seed mass in soybean is affected by both genotype and environment. The aim of the present study was to measure additive, epistatic and quantitative trait locus (QTL)×environment (QE) interaction effects of QTLs on the development of 100-seed weight in a population of 143 F5 derived recombinant inbred lines (RILs) developed from the cross between the soybean cultivars ‘Charleston’ and ‘Dong Nong 594’. Broad-sense heritability of 100-seed weight from 30 days (30D) to 80D stages was 0·58, 0·52, 0·62, 0·60, 0·66 and 0·57, respectively. A total of 17 QTLs with conditional additive (a) effect and/or conditional additive×environment interaction (ae) effect at specific stages were identified in ten linkage groups by conditional mapping. Of them, only 4 QTLs had significant a effect or ae effect at different stages of seed development. Among QTLs with significant a effect, five acted positively and six acted negatively on seed development. A total of 35 epistatic pairwise QTLs of 100-seed weight were identified by conditional mapping at different developmental stages. Five pairs of QTL showed the additive×additive epistatic (aa) effect and 16 QTLs showed the aa×environment interaction (aae) effect at the different developmental stages. QTLs with aa effect as well with their environmental interaction effect appeared to vary at different developmental stages. Overall, the results indicated that 100-seed weight in soybean is under developmental, genetic and environmental control.


2014 ◽  
Vol 41 (11) ◽  
pp. 1049 ◽  
Author(s):  
Mohankumar H. Kapanigowda ◽  
William A. Payne ◽  
William L. Rooney ◽  
John E. Mullet ◽  
Maria Balota

To meet future food needs, grain production must increase despite reduced water availability, so waterproductivity must rise. One way to do this is to raise the ratio of biomass produced to water transpired, which is controlled by the ratio of CO2 assimilation (A) to transpiration (E) (i.e. the transpiration ratio, A : E divided by vapour pressure deficit) or anything affecting stomatal movement.. We describe the genetic variation and basis of A, E and A : E among 70 recombinant inbred lines (RILs) of sorghum (Sorghum bicolor (L.) Moench), using greenhouse experiments. Experiment 1 used 40% and 80% of field capacity (FC) as water regimes; Experiment 2 used 80% FC. Genotype had a significant effect on A, E and A : E. In Experiment 1, mean values for A : E were 1.2–4.4 mmol CO2 mol–1 H2O kPa–1 and 1.6–3.1 mmol CO2 mol–1 H2O kPa–1 under 40% and 80% FC, respectively. In Experiment 2, values were 5.6–9.8 mmol CO2 mol–1 H2O kPa–1. Pooled data for A : E and A : E VPD–1 from Experiment 1 indicate that A : E fell quickly at temperatures >32.3°C. A : E distributions were skewed. Mean heritabilities for A : E were 0.9 (40% FC) and 0.8 (80% FC). Three significant quantitative trait loci (QTLs) associated with A:E, two on SBI-09 and one on SBI-10, accounted for 17–21% of the phenotypic variation. Subsequent experiments identified 38 QTLs controlling variation in height, flowering, biomass, leaf area, greenness and stomatal density. Colocalisation of A : E QTLs with agronomic traits indicated that these QTLs can be used for improving sorghum performance through marker assisted selection (MAS) under preflowering drought stress.


2018 ◽  
Vol 76 (2) ◽  
pp. 559-572 ◽  
Author(s):  
Gabriella Ljungström ◽  
Tessa B Francis ◽  
Marc Mangel ◽  
Christian Jørgensen

Abstract Timing of reproduction may be of crucial importance for fitness, particularly in environments that vary seasonally in food availability or predation risk. However, for animals with spatially separated feeding and breeding habitats, optimal reproductive timing may differ between parents and their offspring, leading to parent-offspring conflict. We assume that offspring have highest survival and fitness if they are spawned around a fixed date, and use state-dependent life-history theory to explore whether variation in conditions affecting only parents (food availability and survival) may influence optimal timing of reproduction. We apply the model to Pacific herring (Clupea palasii) in Puget Sound, USA, where 20 subpopulations spawn at different times of the year. Our model suggests that relatively small differences in adult food availability can lead to altered prioritization in the trade-off between maternal fecundity and what from the offspring’s perspective is the best time to be spawned. Our model also shows that observed among-population variability in reproductive timing may result from adults using different feeding grounds with divergent food dynamics, or from individual variation in condition caused by stochasticity at a single feeding ground. Identifying drivers of reproductive timing may improve predictions of recruitment, population dynamics, and responses to environmental change.


Sign in / Sign up

Export Citation Format

Share Document