Performance analysis of a concentrated solar energy for lighting-power generation combined system based on spectral beam splitting

2017 ◽  
Vol 101 ◽  
pp. 713-727 ◽  
Author(s):  
Canan Kandilli ◽  
Gürhan Külahlı
Author(s):  
Francis A. Di Bella ◽  
Jonathan Gwiazda

This paper reviews a novel power generation system that improves the overall efficiency of concentrated solar energy systems while also providing for the cost effective reclamation and utilization of a man-made geo-physical phenomenon: decommissioned, open pit mines. A preliminary feasibility will be presented of an integrated system consisting of a concentrated solar energy powered Rankine Cycle system and the authors’ novel (patent pending) energy recovery system that consists of a thermally induced, pneumatic (wind turbine) power tube system (Pneumatic Power Tube) that is designed with reflective surfaces for concentrating solar energy. The proposed system is unique in the field of power generation using renewable/natural resources while also providing a solution to the reclamation and utilization of depleted open pit mines. The paper presents a parametric feasibility study of the proposed system installed for a range of “small” and “large” open-pit mines, such as the Palabora copper open pit mine located in South Africa. Using state-of-the-art specifications for power generation from concentrated solar energy systems based on D.O.E. supported research, a average size integrated installations could generate approx. 700–750 Mwe with 12–18 Mwe contributed by the new Pneumatic Power Pit Tubes. The enhancements include a unique design for a pneumatic power tube that combines the functions of solar collector/reflector with a hot air “chimney” air diffuser and wind power generation. A schematic of the proposed integrated system is also provided. The paper also presents a summary of the major technical benefits of the proposed system including the synergisms between the proposed renewable energy system and the application of DOE’s microwave power generation and transmission as well as the societal benefits of reclaiming land areas that are otherwise not suitable for habitation. Suggestions will also be made as to the application of authors’ pneumatic wind turbine power tubes to other large, naturally occurring geo-physical phenomenon.


Author(s):  
Tuantuan Xin ◽  
Cheng Xu ◽  
Gang Xu ◽  
Wenyi Liu ◽  
Yongping Yang

To advance the utilization of the solar energy and coal resources as well as improve the flexibility of coal-based power plant, an improved solar-coal hybrid system for methanol production and power generation is proposed and thermodynamically analyzed. In the proposed system, the concentrated solar energy at high-temperature is used for heating the coal gasification to produce syngas for methanol synthesis; the waste material and heat from coal-to-methanol process are efficiently recovered in the conjunct power generation system; and the surplus electric power is optionally used for methanol synthesis by electrolysis process during the off-peak period. Through employing the proposed system, the solar energy and electricity (optional) could be effectively converted into methanol as stable chemical energy together with a preferable overall system thermal efficiency. The thermodynamic analysis results showed that, the overall energy and exergy efficiencies reaches 48.6 and 47.3%, respectively; the equivalent solar-to-methanol conversion efficiency can soar to 66.2%; and the net electricity-to-methanol efficiency reaches 61.6% with the power load reducing from 48.7% to 31.0%.


2019 ◽  
Vol 159 ◽  
pp. 113937 ◽  
Author(s):  
Chenghao Li ◽  
Jiangwei Liu ◽  
Siyang Zheng ◽  
Xingyu Chen ◽  
Jie Li ◽  
...  

2021 ◽  
Vol 5 (2) ◽  
pp. 16
Author(s):  
Isabel Padilla ◽  
Maximina Romero ◽  
José I. Robla ◽  
Aurora López-Delgado

In this work, concentrated solar energy (CSE) was applied to an energy-intensive process such as the vitrification of waste with the aim of manufacturing glasses. Different types of waste were used as raw materials: a hazardous waste from the aluminum industry as aluminum source; two residues from the food industry (eggshell and mussel shell) and dolomite ore as calcium source; quartz sand was also employed as glass network former. The use of CSE allowed obtaining glasses in the SiO2-Al2O3-CaO system at exposure time as short as 15 min. The raw materials, their mixtures, and the resulting glasses were characterized by means of X-ray fluorescence, X-ray diffraction, and differential thermal analysis. The feasibility of combining a renewable energy, as solar energy and different waste for the manufacture of glasses, would highly contribute to circular economy and environmental sustainability.


Author(s):  
S. Kh. Suleimanov ◽  
V. G. Babashov ◽  
M. U. Dzhanklich ◽  
V. G. Dyskin ◽  
M. I. Daskovskii ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document