scholarly journals Optimum control parameters and long-term productivity of geothermal reservoirs using coupled thermo-hydraulic process modelling

2017 ◽  
Vol 112 ◽  
pp. 151-165 ◽  
Author(s):  
Musa D. Aliyu ◽  
Hua-Peng Chen
2021 ◽  
Vol 10 (1) ◽  
pp. 308-318
Author(s):  
Achmad Komarudin ◽  
Novendra Setyawan ◽  
Leonardo Kamajaya ◽  
Mas Nurul Achmadiah ◽  
Zulfatman Zulfatman

Particle swarm optimization (PSO) is an optimization algorithm that is simple and reliable to complete optimization. The balance between exploration and exploitation of PSO searching characteristics is maintained by inertia weight. Since this parameter has been introduced, there have been several different strategies to determine the inertia weight during a train of the run. This paper describes the method of adjusting the inertia weights using fuzzy signatures called signature PSO. Some parameters were used as a fuzzy signature variable to represent the particle situation in a run. The implementation to solve the tuning problem of linear quadratic regulator (LQR) control parameters is also presented in this paper. Another weight adjustment strategy is also used as a comparison in performance evaluation using an integral time absolute error (ITAE). Experimental results show that signature PSO was able to give a good approximation to the optimum control parameters of LQR in this case.


1999 ◽  
Author(s):  
Takashi Shiba ◽  
Koichi Ito ◽  
Ryohei Yokoyama ◽  
Shigeru Sakashita

Abstract An optimal capacity planning method is proposed for a brewery’s energy supply plant from the viewpoint of long-term economics. The proposed method is composed of two hierarchical stages. At the outer stage, equipment capacities and utility maximum demands of the brewery’s energy supply plant are optimized together with values of control parameters of thermal storage tanks by the sequential linear programming method. At the inner stage, the equipment operation of the plant for given energy demands is simulated on the basis of control rules using LabVIEW. Both two stages are interconnected so as to be compatible with each other. Through a numerical study, it is investigated how equipment capacities, utility maximum demands, and control parameters of thermal storage tanks influence the long-term economics of the plant. From the results, it is ascertained that the long-term economics can be improved using the proposed method.


Author(s):  
Klaus Christoffersen ◽  
Christopher N. Hunter ◽  
Kim J. Vicente

This paper presents a six-month longitudinal study of the effects of ecological interface design (EID) on fault management performance. The research was conducted in the context of DURESS II, a real-time, interactive thermal-hydraulic process control simulation that was designed to be representative of industrial systems. Subjects' performance on two interfaces was compared, one based on the principles of EID and another based on a more traditional piping and instrumentation diagram (P&ID) format. Subjects were required to perform several control tasks, including startup, tuning, shutdown, and fault management on both routine and non-routine faults. At the end of the experiment, subjects used the interface that the other group had been using to control the system. The results indicate that there are substantial individual differences in performance, but that overall, the EID interface led to faster fault detection, more accurate fault diagnosis, and faster fault compensation.


2002 ◽  
Vol 19 (1) ◽  
pp. 61-66 ◽  
Author(s):  
A. J. Fallgatter ◽  
D. R. Aranda ◽  
A. J. Bartsch ◽  
M. J. Herrmann

2021 ◽  
Author(s):  
Aniko Toth ◽  
Peter Szucs ◽  
David K. Fenerty

Abstract There are many compelling arguments for using geothermal energy in Hungary. One of the most important is that the country could thereby exploit its abundant, relatively untapped network of geothermal reservoirs. These are considerably warmer and closer to the surface than in most of Europe. In the foreseeable future, Hungary’s geothermal resources can satisfy the conditions required for efficient energy production. The tremendous amount of energy stored in our geothermal reservoirs could satisfy much of the country’s long-term energy demand.Every geothermal project is designed to fulfill its project objectives by meeting time, budget, technical, and legal/regulatory provisions. Geothermal development is necessarily exposed to risks of varying degrees throughout its development, something which distinguishes geothermal from other kinds of renewable-energy projects. These risks most often concern the availability, amount, suitability, sustainability and use-potential of the geothermal resource, but may also include market, financing, commercial and macro-economic risks.


Author(s):  
P.P. Krutskikh ◽  
O.V. Tsarik

The actual research problem of operations is development of methods of increase of a management efficiency by processes of the conflict nature. Article is devoted to development of methods of increase of a management efficiency by such processes. The purpose of article is the substantiation of the approach to parametrical synthesis of optimum control by multi-step stochastic minimax processes and procedures of the numerical analysis of likelihood dynamic characteristics of process. Formalization of process consists in definition of its type, a vector of phase coordinates and corresponding restrictions, the task of set of the actions sold by each the parties, efficiency of each action, control parameters (varied parameters of process) which task of values each of the parties influences a course of process, control restrictions, criteria of efficiency of the parties expressed through elements of a vector of phase coordinates. Discrete final stochastic process is considered. Change of phase coordinates occurs during the discrete moments of time, named steps of process. Phase coordinates depend on values of two groups of control parameters (controls of the counteracting parties). Within the limits of the modern theory of optimization of stochastic systems procedure of synthesis of optimum control is realized two-phase. At the first stage with use of analytical methods the structure of optimum control is determined. For these purposes the simplified determined model of process can to be used. At the second stage parametrical control optimization with use of algorithmic methods and computing procedures statistical linearization is carried out. Dynamics of process is described vectorial finite-difference equation. It is necessary to distinguish cases when there is saddle a point and when saddle the point is absent. Parametrical synthesis of optimum control is possible only in the first case. It is considered three basic variants of the equation: the linear equation; the nonlinear equation with optimum controls on border of a range of definition; the nonlinear equation with optimum controls inside of a range of definition. For the first variant there is an effective algorithm of parametrical synthesis of optimum control. For the second variant of synthesis of optimum control it is possible, but the algorithm is not effective. For the third variant to determine optimum managements it is not possible. Procedure statistical linearization is offered. Procedure consists in generation of set of realizations of the casual process set by the vector equation, calculation of optimum control for each concrete realization and the further statistical processing of the received results. The process described by the piecewise linear vector equation, is a special case of nonlinear process. At that it keeps property of independence of optimum control from coordinates of process. It provides expansion of a scope of effective computing procedure of synthesis of optimum control on a new class of piecewise linear processes. Property of a constancy process Hamiltonian can be used as criterion of correctness of calculation of optimum control in concrete cases. Application of the offered procedure provides use of methods of statistical modelling for the decision of tasks of the analysis of dynamics of the conflict and synthesis of optimum control in view of nonlinearity of functions of losses of the parties, dependence of efficiency of means used by them on the random factors formalized in the form of stochastic functions with various likelihood distributions, and also uncertainty concerning actions of the opponent.


Sign in / Sign up

Export Citation Format

Share Document