scholarly journals Geothermal Power Project’s Manageable Risks in Hungary

Author(s):  
Aniko Toth ◽  
Peter Szucs ◽  
David K. Fenerty

Abstract There are many compelling arguments for using geothermal energy in Hungary. One of the most important is that the country could thereby exploit its abundant, relatively untapped network of geothermal reservoirs. These are considerably warmer and closer to the surface than in most of Europe. In the foreseeable future, Hungary’s geothermal resources can satisfy the conditions required for efficient energy production. The tremendous amount of energy stored in our geothermal reservoirs could satisfy much of the country’s long-term energy demand.Every geothermal project is designed to fulfill its project objectives by meeting time, budget, technical, and legal/regulatory provisions. Geothermal development is necessarily exposed to risks of varying degrees throughout its development, something which distinguishes geothermal from other kinds of renewable-energy projects. These risks most often concern the availability, amount, suitability, sustainability and use-potential of the geothermal resource, but may also include market, financing, commercial and macro-economic risks.

2021 ◽  
Vol 26 (2) ◽  
pp. 2434-2440
Author(s):  
CRISTINA BACĂU ◽  
◽  
NICOLETA MATEOC-SÎRB ◽  
RAMONA CIOLAC ◽  
TEODOR MATEOC ◽  
...  

The use of renewable energy resources is gaining more and more ground, thanks to the continuous increase in the price of fossil energy and the decrease in stocks, and the management of waste from nuclear energy production, respectively. The implementation of an energy strategy to harness the potential of renewable energy sources (RES) is part of the coordinates of Romania’s medium – and long-term energy development and provides the appropriate framework for the making of decisions on energy alternatives and the inclusion in the Community acquis in the field. In this respect, a study on the biomass potential of Timiş County and on the possibilities of producing unconventional energy from biomass has been carried out. The study is based on research, data collection from the literature, as well as from official documents or official websites, the processing and interpretation of the data and their quantitative and qualitative analysis. It was concluded that biomass is a promising renewable energy source for Romania, both in terms of potential and in terms of usability.


2020 ◽  
Vol 154 ◽  
pp. 05004
Author(s):  
Anna Chmielowska ◽  
Barbara Tomaszewska ◽  
Anna Sowiżdżał

Since the oil crises in the 1970s, geothermal resources have received much attention and researches aimed at its recognition have been conducted all around the globe. Nevertheless, the investment cost associated mainly with drilling works is a crucial limitation for the successful implementation of new geothermal projects. The radical solution affecting the cost effectiveness of any geothermal investments might be an adaptation of existing un-exploited boreholes of the oil and gas sector for geothermal purposes. Moreover, a few studies on heat and/or energy recovery from oil and gas provinces have indicated that a tremendous amount of geothermal energy co-exists with petroleum fields. Thereby, the article centres on global concepts related to the adaptation of boreholes after the exploitation of hydrocarbon deposits or negative exploratory wells in order to exploit geothermal energy resources. Selected concepts focused on possible electricity production and the space heating sector are discussed. Other potential technologies based on utilization of geothermal energy attained by borehole heat exchangers are also indicated.


Science ◽  
1977 ◽  
Vol 195 (4282) ◽  
pp. 961-962
Author(s):  
Luther J. Carter
Keyword(s):  

2015 ◽  
Vol 51 (5) ◽  
pp. 3353-3369 ◽  
Author(s):  
Bin Xu ◽  
Ping-An Zhong ◽  
Zachary Stanko ◽  
Yunfa Zhao ◽  
William W.-G. Yeh

Science ◽  
1977 ◽  
Vol 195 (4282) ◽  
pp. 961-962
Author(s):  
L. J. CARTER
Keyword(s):  

2016 ◽  
Vol 35 ◽  
pp. 23-26 ◽  
Author(s):  
Henrik Vosgerau ◽  
Anders Mathiesen ◽  
Morten Sparre Andersen ◽  
Lars Ole Boldreel ◽  
Morten Leth Hjuler ◽  
...  

The Danish subsurface contains deep geothermal resources which may contribute for hundreds of years to the mixed Danish energy supply (Mathiesen et al. 2009). At present only a limited fraction of these resources are utilised in three existing geothermal power plants in Thisted, Margretheholm and Sønderborg (Fig. 1) where warm formation water is pumped to the surface from a production well and, after heat extraction, returned to the subsurface in injection wells (Fig. 2). Deep geothermal energy has the advantage of being a sustainable and environmentally friendly energy source which is furthermore independent of climate and seasonal variations, in contrast to wind and solar energy. The implementation of deep geothermal energy for district heating replacing conventional energy sources, especially coal and oil, may thus lead to a considerable reduction in the emission of greenhouse gases. There are therefore good reasons to include geothermal energy as a central component in Denmark’s future supply of energy for district heating. Furthermore, heat-demanding industries may consider the possibility to integrate geothermal energy and energy storage in their production process. In order to facilitate the use of geothermal energy, a broad majority in the Danish parliament has granted financial support for initiatives within the geothermal field (Energy policy agreement of March 22, 2012). The present paper deals with one of the outcomes of this agreement, namely a WebGIS portal with an overview of existing and interpreted geological and geophysical data. This will be relevant for all stakeholders in the exploration of deep geothermal resources in the Danish subsurface. The portal focuses on geothermal reservoirs within the 800–3000 m depth interval and provides an overview of the amount and quality of existing geodata, the geological composition of the subsurface, and interpreted thematic products such as geological maps of potential geothermal reservoirs. A comprehensive map from the portal showing onshore and nearoffshore locations where the geological conditions are potentially suitable for extraction of deep geothermal energy in Denmark is shown in Fig. 1. Many of the thematic maps are outcomes of the project The geothermal energy potential in Denmark – reservoir properties, temperature distribution and models for utilization under the programme Sustainable Energy and Environment funded by the Danish Agency for Science, Technology and Innovation.


2020 ◽  
Vol 39 (12) ◽  
pp. 855-856
Author(s):  
J. O. Kaven ◽  
D. C. Templeton ◽  
Arpita P. Bathija

Geothermal energy is a global renewable resource that has the potential to provide a significant portion of baseload energy in many regions. In the United States, it has the potential to provide 8.5% of the electric generation capacity by the middle of the century. In general, geothermal systems require heat, permeability, and water to be viable for energy generation. However, with current technologies, only heat is strictly necessary in a native system. Engineered geothermal systems (EGS) introduce water into the subsurface at elevated pressures and reduced temperatures and enhance permeability through hydraulic and/or shear fracturing. Additionally, although moderate- to high-temperature resources currently dominate geothermal energy production, low-temperature resources have been utilized for direct-use cases. When well balanced and maintained, geothermal resources can produce significant amounts of heat and achieve long-term sustainability on the order of an estimated tens to hundreds of years.


Sign in / Sign up

Export Citation Format

Share Document