Techno-economic analysis of H2 energy storage system based on renewable energy certificate

Author(s):  
Boreum Lee ◽  
Dongjun Lim ◽  
Hyunjun Lee ◽  
Manhee Byun ◽  
Hankwon Lim
2019 ◽  
Vol 31 (5) ◽  
pp. 860-869 ◽  
Author(s):  
Min-Su Kang ◽  
Young-Kwon Park ◽  
Kyung-Tae Kim

In this study, the optimal capacity of a battery and power conditioning system (PCS) of energy storage system were calculated. In addition, economic analysis was conducted to determine the optimal equipment standard, taking the government support plan into account. In addition, the changes in the power generation pattern were examined when the energy storage system and photovoltaic (PV) were connected to verify the power peak management efficiency of the energy storage system. Moreover, the effect of the energy storage system support policy was assessed by comparing the economic efficiency of single-PV equipment and energy storage system-connected equipment by the internal rate of return. Internal rate of return was analyzed by the change in cost of energy storage system equipment and the price of system marginal price/renewable energy certificate, which was a sales factor, and used for economic forecasting of the energy storage system. To accomplish this, the 2015 power generation output data (daily average 3.69 h power generation) of LG Hausys Ulsan station were converted to small-scale (3 MW) and large-scale (10 MW) solar power and a model that calculated the factor capacity of battery and the PCS capacity of the energy storage system was then constructed. Furthermore, the selected battery capacity and PCS capacity were analyzed separately by economic analysis to propose an energy storage system equipment standard, which could guarantee the optimal economic efficiency. Finally, based on the “Guideline for Management and Operation of Mandatory Supply for New and Renewable Energy” established by the Ministry of Commerce Industry and Energy, the profit model applied to the economic analysis was limited to an energy storage system charged from 10:00 to 16:00.


2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


2021 ◽  
Vol 19 (02) ◽  
pp. 288-296
Author(s):  
Luiz Renato Braz Pontes ◽  
Yuri Percy Molina Rodriguez ◽  
Jaime Luyo Kuong ◽  
Hugo Rojas Espinoza

Sign in / Sign up

Export Citation Format

Share Document