Impact of increasing transmission capacity for a massive integration of renewable energy on the energy and environmental value of distributed generation

Author(s):  
H. Sebastian Oliva ◽  
Juan Muñoz ◽  
Felipe Fredes ◽  
Enzo Sauma
2013 ◽  
Vol 53 ◽  
pp. 354-364 ◽  
Author(s):  
Salvador Ruiz-Romero ◽  
Antonio Colmenar-Santos ◽  
Rosario Gil-Ortego ◽  
Antonio Molina-Bonilla

Author(s):  
Bisma Imtiaz ◽  
Imran Zafar ◽  
Cui Yuanhui

Due to the rapid increase in energy demand with depleting conventional sources, the world’s interest is moving towards renewable energy sources. Microgrid provides easy and reliable integration of distributed generation (DG) units based on renewable energy sources to the grid. The DG’s are usually integrated to microgrid through inverters. For a reliable operation of microgrid, it must have to operate in grid connected as well as isolated mode. Due to sudden mode change, performance of the DG inverter system will be compromised. Design and simulation of an optimized microgrid model in MATLAB/Simulink is presented in this work. The goal of the designed model is to integrate the inverter-interfaced DG’s to the microgrid in an efficient manner. The IEEE 13 bus test feeder has been converted to a microgrid by integration of DG’s including diesel engine generator, photovoltaic (PV) block and battery. The main feature of the designed MG model is its optimization in both operated modes to ensure the high reliability. For reliable interconnection of designed MG model to the power grid, a control scheme for DG inverter system based on PI controllers and DQ-PLL (phase-locked loop) has been designed. This designed scheme provides constant voltage in isolated mode and constant currents in grid connected mode. For power quality improvement, the regulation of harmonic current insertion has been performed using LCL filter. The performance of the designed MG model has been evaluated from the simulation results in MATLAB/ Simulink.


2015 ◽  
Vol 38 (1) ◽  
pp. 9-13
Author(s):  
H.A. Khattab ◽  
M.F Awad-alla ◽  
S.M Allam ◽  
S.M farrag

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4173 ◽  
Author(s):  
Ingo Liere-Netheler ◽  
Frank Schuldt ◽  
Karsten von Maydell ◽  
Carsten Agert

Power system security is increasingly endangered due to novel power flow situations caused by the growing integration of distributed generation. Consequently, grid operators are forced to request the curtailment of distributed generators to ensure the compliance with operational limits more often. This research proposes a framework to simulate the incidental amount of renewable energy curtailment based on load flow analysis of the network. Real data from a 110 kV distribution network located in Germany are used to validate the proposed framework by implementing best practice curtailment approaches. Furthermore, novel operational concepts are investigated to improve the practical implementation of distributed generation curtailment. Specifically, smaller curtailment level increments, coordinated selection methods, and an extension of the n-1 security criterion are analyzed. Moreover, combinations of these concepts are considered to depict interdependencies between several operational aspects. The results quantify the potential of the proposed concepts to improve established grid operation practices by minimizing distributed generation curtailment and, thus, maximizing power system integration of renewable energies. In particular, the extension of the n-1 criterion offers significant potential to reduce curtailment by up to 94.8% through a more efficient utilization of grid capacities.


2019 ◽  
Vol 39 (2) ◽  
Author(s):  
Juan Martín Guardiola Montenegro ◽  
Eduardo Gómez Luna ◽  
Eduardo Marlés Sáenz ◽  
Jorge Armando De la Cruz Saavedra

Electrical networks are evolving and taking on more challenges as the inclusion of renewable energy and distributed generation units increase, specially at distribution levels. Big trends of generating electricity with alternative and renewable resources has promoted the formation of distribution networks subsystems or micro grids, capable of supplying their own electric demand and to export energy to the interconnected system, if necessary. However, the effects of these generation units into the network and into the microgrid as well are many, as harmonic distortion, voltage flickers and especially in electrical protections.This paper provides an overview about implementation of renewable energy and distributed generation worldwide, as well as an introduction to microgrids concept and its main impacts and challenges into the electric systems. Finally, the main impacts of microgrid on protection equipments are presented at a distribution level, being adaptive protections one of the solutions to the dynamic changes of the electric system.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1187 ◽  
Author(s):  
Fernando Yanine ◽  
Antonio Sánchez-Squella ◽  
Aldo Barrueto ◽  
Antonio Parejo ◽  
Felisa Cordova ◽  
...  

In this paper a novel model is being proposed and considered by ENEL—the largest electric utility in Chile—and analyzed thoroughly, whereby electric power control and energy management for a 60-apartments’ residential building is presented as an example of the utility’s green energy program, part of its Smart Grid Transformation plan to install grid-tied distributed generation (DG) systems, namely microgrids, with solar generation and energy storage in Santiago, Chile. The particular tariffs scheme analysis shown is part of the overall projected tentative benefits of adopting the new scheme, which will require the utility’s customers to adapt their consumption behavior to the limited supply of renewable energy by changing energy consumption habits and schedules in a way that maximizes the capacity and efficiency of the grid-tied microgrid with energy storage. The change in behavior entails rescheduling power consumption to hours where the energy supply capacity in the DG system is higher and price is lower as well as curtailing their power needs in certain hourly blocks so as to maximize DG system’s efficiency and supply capacity. Nevertheless, the latter presents a problem under the perspective of ENEL’s renewable energy sources (RES) integration plan with the electric utility’s grid supply, which, up until now and due to current electric tariffs law, has not had a clear solution. Under said scenario, a set of strategies based on energy homeostasis principles for the coordination and control of the electricity supply versus customers’ demand has been devised and tested. These strategies which consider various scenarios to conform to grid flexibility requirements by ENEL, have been adapted for the specific needs of these types of customers while considering the particular infrastructure of the network. Thus, the microgrid adjusts itself to the grid in order to complement the grid supply while seeking to maximize green supply capacity and operational efficiency, wherein the different energy users and their energy consumption profiles play a crucial role as “active loads”, being able to respond and adapt to the needs of the grid-connected microgrid while enjoying economic benefits. Simulation results are presented under different tariff options, system’s capacity and energy storage alternatives, in order to compare the proposed strategies with the actual case of traditional grid’s electricity distribution service, where no green energy is present. The results show the advantage of the proposed tariffs scheme, along with power control and energy management strategies for the integration of distributed power generation within ENEL’s Smart Grid Transformation in Chile.


Sign in / Sign up

Export Citation Format

Share Document