A common random effect induced bivariate gamma degradation process with application to remaining useful life prediction

Author(s):  
Kai Song ◽  
Lirong Cui
2021 ◽  
Author(s):  
Yubing Wang ◽  
Guo Xie ◽  
Jing Yang ◽  
Yu Liu ◽  
Xinhong Hei ◽  
...  

2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881718 ◽  
Author(s):  
Wentao Mao ◽  
Jianliang He ◽  
Jiamei Tang ◽  
Yuan Li

For bearing remaining useful life prediction problem, the traditional machine-learning-based methods are generally short of feature representation ability and incapable of adaptive feature extraction. Although deep-learning-based remaining useful life prediction methods proposed in recent years can effectively extract discriminative features for bearing fault, these methods tend to less consider temporal information of fault degradation process. To solve this problem, a new remaining useful life prediction approach based on deep feature representation and long short-term memory neural network is proposed in this article. First, a new criterion, named support vector data normalized correlation coefficient, is proposed to automatically divide the whole bearing life as normal state and fast degradation state. Second, deep features of bearing fault with good representation ability can be obtained from convolutional neural network by means of the marginal spectrum in Hilbert–Huang transform of raw vibration signals and health state label. Finally, by considering the temporal information of degradation process, these features are fed into a long short-term memory neural network to construct a remaining useful life prediction model. Experiments are conducted on bearing data sets of IEEE PHM Challenge 2012. The results show the significance of performance improvement of the proposed method in terms of predictive accuracy and numerical stability.


Author(s):  
Juan Li ◽  
Bo Jing ◽  
Hongde Dai ◽  
Zengjin Sheng ◽  
Xiaoxuan Jiao ◽  
...  

Remaining useful life prediction is the core of condition-based maintenance under the technology framework of prognostic and health management. But the remaining useful life of airborne fuel pump after maintenance is difficult to predict because of the multi-stage noise and small data size. A new method is proposed to solve the remaining useful life prediction of repaired fuel pump. Firstly, an alternative smooth transition auto-regression model logistic smooth transition auto-regression or exponential smooth transition auto-regression is proposed to reduce the multi-stage noise. Secondly, random effect Wiener process is utilized to model the de-noised degradation data, and the posterior parameters of remaining useful life prediction after maintenance are derived by the Bayesian method based on the parameters before maintenance. Finally, the method proposed above is compared with the methods which neglect the multi-stage noise and information before maintenance, comparative results show that the proposed method can improve the remaining useful life prediction accuracy significantly.


Author(s):  
Nicola Esposito ◽  
Agostino Mele ◽  
Bruno Castanier ◽  
Massimiliano Giorgio

In this paper, a new gamma-based degradation process with random effect is proposed that allows to account for the presence of measurement error that depends in stochastic sense on the measured degradation level. This new model extends a perturbed gamma model recently suggested in the literature, by allowing for the presence of a unit to unit variability. As the original one, the extended model is not mathematically tractable. The main features of the proposed model are illustrated. Maximum likelihood estimation of its parameters from perturbed degradation measurements is addressed. The likelihood function is formulated. Hence, a new maximization procedure that combines a particle filter and an expectation-maximization algorithm is suggested that allows to overcome the numerical issues posed by its direct maximization. Moreover, a simple algorithm based on the same particle filter method is also described that allows to compute the cumulative distribution function of the remaining useful life and the conditional probability density function of the hidden degradation level, given the past noisy measurements. Finally, two numerical applications are developed where the model parameters are estimated from two sets of perturbed degradation measurements of carbon-film resistors and fuel cell membranes. In the first example the presence of random effect is statistically significant while in the second example it is not significant. In the applications, the presence of random effect is checked via appropriate statistical procedures. In both the examples, the influence of accounting for the presence of random effect on the estimates of the cumulative distribution function of the remaining useful life of the considered units is also discussed. Obtained results demonstrate the affordability of the proposed approach and the usefulness of the proposed model.


2019 ◽  
Vol 11 (12) ◽  
pp. 168781401989673
Author(s):  
Lei Song ◽  
Haoran Liang ◽  
Wei Teng ◽  
Lili Guo

Stirling cryocoolers are widely used to refrigerate significant facilities in military and aerospace applications. However, under the influences of high-frequency piston motion and thermal environment deterioration, the refrigerating performance of Stirling cryocoolers will worsen inevitably, thus affecting the successful accomplishment of space mission. In this article, a methodology on assessing the performance of space Stirling cryocoolers is proposed, which involves the analysis of the failure mechanism, health indicator construction and remaining useful life prediction of the cryocooler. The potential factors affecting the refrigerating performance are discussed first. In view of these, three health indicators representing the degradation process of cryocoolers are constructed and then a multi-indicator method based on particle filter is proposed for remaining useful life prediction. Finally, the proposed method is validated by a Stirling cryocooler from one retired aircraft, and the results show that the constructed health indicators and remaining useful life prediciton approaches are effective for performance assessment of Stirling cryocooler.


Sign in / Sign up

Export Citation Format

Share Document