Remaining Useful Life Prediction of Machinery Subjected to Two-Phase Degradation Process

Author(s):  
Tao Yan ◽  
Yaguo Lei ◽  
Naipeng Li
2021 ◽  
Author(s):  
Yubing Wang ◽  
Guo Xie ◽  
Jing Yang ◽  
Yu Liu ◽  
Xinhong Hei ◽  
...  

2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881718 ◽  
Author(s):  
Wentao Mao ◽  
Jianliang He ◽  
Jiamei Tang ◽  
Yuan Li

For bearing remaining useful life prediction problem, the traditional machine-learning-based methods are generally short of feature representation ability and incapable of adaptive feature extraction. Although deep-learning-based remaining useful life prediction methods proposed in recent years can effectively extract discriminative features for bearing fault, these methods tend to less consider temporal information of fault degradation process. To solve this problem, a new remaining useful life prediction approach based on deep feature representation and long short-term memory neural network is proposed in this article. First, a new criterion, named support vector data normalized correlation coefficient, is proposed to automatically divide the whole bearing life as normal state and fast degradation state. Second, deep features of bearing fault with good representation ability can be obtained from convolutional neural network by means of the marginal spectrum in Hilbert–Huang transform of raw vibration signals and health state label. Finally, by considering the temporal information of degradation process, these features are fed into a long short-term memory neural network to construct a remaining useful life prediction model. Experiments are conducted on bearing data sets of IEEE PHM Challenge 2012. The results show the significance of performance improvement of the proposed method in terms of predictive accuracy and numerical stability.


2019 ◽  
Vol 11 (12) ◽  
pp. 168781401989673
Author(s):  
Lei Song ◽  
Haoran Liang ◽  
Wei Teng ◽  
Lili Guo

Stirling cryocoolers are widely used to refrigerate significant facilities in military and aerospace applications. However, under the influences of high-frequency piston motion and thermal environment deterioration, the refrigerating performance of Stirling cryocoolers will worsen inevitably, thus affecting the successful accomplishment of space mission. In this article, a methodology on assessing the performance of space Stirling cryocoolers is proposed, which involves the analysis of the failure mechanism, health indicator construction and remaining useful life prediction of the cryocooler. The potential factors affecting the refrigerating performance are discussed first. In view of these, three health indicators representing the degradation process of cryocoolers are constructed and then a multi-indicator method based on particle filter is proposed for remaining useful life prediction. Finally, the proposed method is validated by a Stirling cryocooler from one retired aircraft, and the results show that the constructed health indicators and remaining useful life prediciton approaches are effective for performance assessment of Stirling cryocooler.


2005 ◽  
Vol 48 (2) ◽  
pp. 208-217 ◽  
Author(s):  
Matthew Watson ◽  
Carl Byington ◽  
Douglas Edwards ◽  
Sanket Amin

Sign in / Sign up

Export Citation Format

Share Document