scholarly journals A novel cardiac differentiation method of a large number and uniformly-sized spheroids using microfabricated culture vessels

2020 ◽  
Vol 15 ◽  
pp. 18-26 ◽  
Author(s):  
Tatsuaki Miwa ◽  
Alimjan Idiris ◽  
Hiromichi Kumagai
2007 ◽  
Vol 342-343 ◽  
pp. 25-28 ◽  
Author(s):  
S. Hong ◽  
J.K. Kang ◽  
C.J. Bae ◽  
E.S. Ryu ◽  
S.H. Lee ◽  
...  

To obtain an enhanced population of cardiomyocytes from differentiating mouse embryonic stem (ES) cells, we confirmed the role of noggin treatment during the cardiac differentiation of mouse ES cells. ES cells were cultured in ES medium containing both noggin and LIF for 3 days on the mouse embryonic fibroblast feeder layer, followed by dissociated and suspension culture without LIF to form the embryoid body (EB). The next day, noggin was eliminated and EBs were cultured continuously. Noggin treated ES cells showed a relatively rapid increase of cardiac marker genes, while the vehicle (PBS) treated group showed no significant cardiac marker expression at 4 days after the EB formation. Furthermore, Noggin treated ES cells showed 68.00±9.16% spontaneous beating EBs at 12 days after the EB formation. To develop a more efficient cardiomyocyte differentiation method, we tested several known cardiogenic reagents (ascorbic acid, 5’-Azacytidine, LiCl, oxytocin, FGF2 and PDGF-BB) after noggin induction or we cultured noggin treated ES cells on various extracellular matrixes (collagen, fibronectin and Matrigel). Quantitative RT-PCR and immunocytochemistry results showed a significantly increased cardiac differentiation rate in the FGF2 treated group. Differentiation on the collagen extracellular matrix (ECM) could slightly increase the cardiac differentiation efficiency. These results show the possibilities for the establishment of selective differentiation conditions for the cardiac differentiation of mouse ES cells.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
MK Paudel ◽  
O Shirota ◽  
S Sekita ◽  
H Tanaka ◽  
S Morimoto

2021 ◽  
Author(s):  
Fernanda C. P. Mesquita ◽  
Jacquelynn Morrissey ◽  
Po-Feng Lee ◽  
Gustavo Monnerat ◽  
Yutao Xi ◽  
...  

Decellularized extracellular matrix (dECM) from human atria preserves key native components that directed the cardiac differentiation of hiPSCs to an atrial-like phenotype, yielding a twofold increase of functional atrial-like cells.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 812
Author(s):  
Shimeng Qiu ◽  
Yaling Li ◽  
Yuki Imakura ◽  
Shinji Mima ◽  
Tadahiro Hashita ◽  
...  

The endoderm, differentiated from human induced pluripotent stem cells (iPSCs), can differentiate into the small intestine and liver, which are vital for drug absorption and metabolism. The development of human iPSC-derived enterocytes (HiEnts) and hepatocytes (HiHeps) has been reported. However, pharmacokinetic function-deficiency of these cells remains to be elucidated. Here, we aimed to develop an efficient differentiation method to induce endoderm formation from human iPSCs. Cells treated with activin A for 168 h expressed higher levels of endodermal genes than those treated for 72 h. Using activin A (days 0–7), CHIR99021 and PI−103 (days 0–2), and FGF2 (days 3–7), the hiPSC-derived endoderm (HiEnd) showed 97.97% CD−117 and CD−184 double-positive cells. Moreover, HiEnts derived from the human iPSC line Windy had similar or higher expression of small intestine-specific genes than adult human small intestine. Activities of the drug transporter P-glycoprotein and drug-metabolizing enzyme cytochrome P450 (CYP) 3A4/5 were confirmed. Additionally, Windy-derived HiHeps expressed higher levels of hepatocyte- and pharmacokinetics-related genes and proteins and showed higher CYP3A4/5 activity than those derived through the conventional differentiation method. Thus, using this novel method, the differentiated HiEnts and HiHeps with pharmacokinetic functions could be used for drug development.


Sign in / Sign up

Export Citation Format

Share Document