In vitro propagation and cardiac differentiation of canine induced pluripotent stem cells on carbon nanotube substrates

2021 ◽  
pp. 101571
Author(s):  
Mahalakshmi Natarajan ◽  
Purnima Singh ◽  
Tanmay Mondal ◽  
Kuldeep Kumar ◽  
Kinsuk Das ◽  
...  
2019 ◽  
Vol 68 (1) ◽  
pp. 35-47 ◽  
Author(s):  
Praopilas Phakdeedindan ◽  
Piyathip Setthawong ◽  
Narong Tiptanavattana ◽  
Sasitorn Rungarunlert ◽  
Praewphan Ingrungruanglert ◽  
...  

2020 ◽  
Vol 21 (2) ◽  
pp. 507
Author(s):  
Alessandra Maria Lodrini ◽  
Lucio Barile ◽  
Marcella Rocchetti ◽  
Claudia Altomare

Reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) has revolutionized the complex scientific field of disease modelling and personalized therapy. Cardiac differentiation of human iPSCs into cardiomyocytes (hiPSC-CMs) has been used in a wide range of healthy and disease models by deriving CMs from different somatic cells. Unfortunately, hiPSC-CMs have to be improved because existing protocols are not completely able to obtain mature CMs recapitulating physiological properties of human adult cardiac cells. Therefore, improvements and advances able to standardize differentiation conditions are needed. Lately, evidences of an epigenetic memory retained by the somatic cells used for deriving hiPSC-CMs has led to evaluation of different somatic sources in order to obtain more mature hiPSC-derived CMs.


2021 ◽  
Vol 22 (9) ◽  
pp. 4334
Author(s):  
Katrina Albert ◽  
Jonna Niskanen ◽  
Sara Kälvälä ◽  
Šárka Lehtonen

Induced pluripotent stem cells (iPSCs) are a self-renewable pool of cells derived from an organism’s somatic cells. These can then be programmed to other cell types, including neurons. Use of iPSCs in research has been two-fold as they have been used for human disease modelling as well as for the possibility to generate new therapies. Particularly in complex human diseases, such as neurodegenerative diseases, iPSCs can give advantages over traditional animal models in that they more accurately represent the human genome. Additionally, patient-derived cells can be modified using gene editing technology and further transplanted to the brain. Glial cells have recently become important avenues of research in the field of neurodegenerative diseases, for example, in Alzheimer’s disease and Parkinson’s disease. This review focuses on using glial cells (astrocytes, microglia, and oligodendrocytes) derived from human iPSCs in order to give a better understanding of how these cells contribute to neurodegenerative disease pathology. Using glia iPSCs in in vitro cell culture, cerebral organoids, and intracranial transplantation may give us future insight into both more accurate models and disease-modifying therapies.


Sign in / Sign up

Export Citation Format

Share Document