scholarly journals Advances in multi-variate analysis methods for new physics searches at the Large Hadron Collider

2021 ◽  
pp. 100063
Author(s):  
Anna Stakia ◽  
Tommaso Dorigo ◽  
Giovanni Banelli ◽  
Daniela Bortoletto ◽  
Alessandro Casa ◽  
...  
2008 ◽  
Vol 23 (32) ◽  
pp. 5117-5136 ◽  
Author(s):  
MONICA PEPE ALTARELLI ◽  
FREDERIC TEUBERT

LHCb is a dedicated detector for b physics at the LHC (Large Hadron Collider). In this paper we present a concise review of the detector design and performance together with the main physics goals and their relevance for a precise test of the Standard Model and search of New Physics beyond it.


2020 ◽  
Vol 245 ◽  
pp. 06021
Author(s):  
Adam Leinweber ◽  
Martin White

Recent searches for supersymmetric particles at the Large Hadron Collider have been unsuccessful in detecting any BSM physics. This is partially because the exact masses of supersymmetric particles are not known, and as such, searching for them is very difficult. The method broadly used in searching for new physics requires one to optimise on the signal being searched for, potentially suppressing sensitivity to new physics which may actually be present that does not resemble the chosen signal. The problem with this approach is that, in order to detect something with this method, one must already know what to look for. I will showcase one machine-learning technique that can be used to define a “signal-agnostic” search. This is a search that does not make any assumptions about the signal being searched for, allowing it to detect a signal in a more general way. This method is applied to simulated BSM physics data and the results are explored.


2017 ◽  
Vol 3 (3) ◽  
Author(s):  
Joaquim Matias

Particle physicist Joaquim Matias analyzes recent results from the Large Hadron Collider—in particular, rare decays of B-mesons that suggest the violation of leptonic universality—for evidence of New Physics.


2008 ◽  
Vol 23 (35) ◽  
pp. 2987-2996 ◽  
Author(s):  
ARUNAVA ROY ◽  
MARCO CAVAGLIÀ

Supersymmetry and extra dimensions are the two most promising candidates for new physics at the TeV scale. Supersymmetric particles or extra-dimensional effects could soon be observed at the Large Hadron Collider. We propose a simple but effective method to discriminate the two models: the analysis of isolated leptons with high transverse momentum. Black hole events are simulated with the CATFISH black hole generator. Supersymmetry simulations use a combination of PYTHIA and ISAJET, the latter providing the mass spectrum. Our results show that the measure of the dilepton invariant mass provides a promising signature to differentiate supersymmetry and black hole events at the Large Hadron Collider. Analysis of event-shape variables and multilepton events complement and strengthen this conclusion.


2009 ◽  
Vol 24 (01) ◽  
pp. 1-15 ◽  
Author(s):  
GUSTAAF BROOIJMANS

Experiments will soon start taking data at CERN's Large Hadron Collider (LHC) with high expectations for discovery of new physics phenomena. Indeed, the LHC's unprecedented center-of-mass energy will allow the experiments to probe an energy regime where the standard model is known to break down. Here, the experiments' capability to observe new resonances in various channels is reviewed.


Author(s):  
Martino Borsato ◽  
Xabier Cid-Vidal ◽  
Yuhsin Tsai ◽  
Carlos Vázquez Sierra ◽  
Jose Francisco Zurita ◽  
...  

Abstract In this paper, we describe the potential of the LHCb experiment to detect Stealth physics. This refers to dynamics beyond the Standard Model that would elude searches that focus on energetic objects or precision measurements of known processes. Stealth signatures include long-lived particles and light resonances that are produced very rarely or together with overwhelming backgrounds. We will discuss why LHCb is equipped to discover this kind of physics at the Large Hadron Collider and provide examples of well-motivated theoretical models that can be probed with great detail at the experiment.


Author(s):  
Linn Kretzschmar

Abstract An international consortium of more than 150 organizations worldwide is studying the feasibility of various future particle colliders to expand our understanding of the inner workings of the Universe. At the core of the Future Circular Collider (FCC) study is the design of a 100 km long circular particle collider infrastructure that could extend CERN’s current accelerator complex with an integral research program that spans 70 years. The first step would be an intensity-frontier electron-positron collider allowing to study with precision the Higgs couplings with many of the Standard Model particles and search with high-precision for new physics while the ultimate goal is to build a proton collider with a c.m.s collision energy seven times larger than the Large Hadron Collider. Hosted in the same tunnel and profiting from the new infrastructure, FCC-hh would allow to explore a new energy regime where new physics may be at play.


2010 ◽  
Vol 73 (1) ◽  
pp. 191-200 ◽  
Author(s):  
N. V. Krasnikov ◽  
V. A. Matveev

Sign in / Sign up

Export Citation Format

Share Document