Assignment of igneous rocks to lamproite: major- and trace-element criteria and implications for the history of the Tomtor pluton (northwestern Yakutia)

2009 ◽  
Vol 50 (10) ◽  
pp. 911-916 ◽  
Author(s):  
Yu.A. Bagdasarov
2021 ◽  
Author(s):  
◽  
Lai Kwan Denise Tang

<p>Hong Kong represents a microcosm of the magmatic and tectonic processes that are related to formation of the Southeast China Magmatic Belt (SCMB, ~1,300 km long by 400 km wide). The SCMB is dominated by extensive Mesozoic (Yanshanian Orogeny) igneous rocks, which form part of an extensive, long-lived circum-Pacific igneous province. In Hong Kong, large silicic ignimbrites, produced from several calderas identified through geological mapping, together with their sub-volcanic plutons record a ~26-Myr period of magmatic activities from ~164 to 138 Ma. This work studies these volcanic-plutonic assemblages with the associated Lantau and High Island caldera complexes, with an emphasis on the ~143-138 Ma period from the latter complex. This study uses multiple techniques, including field studies, zircon geochronology and trace element analyses, and zircon and apatite low-temperature thermochronology, to gain new insights into the Mesozoic tectono-magmatic history in this region.  Field studies demonstrate that the High Island caldera complex (with its main collapse at 140.9±0.4 Ma in association with the High Island Tuff) is structurally more complex than previously suggested and represents a long-lived, large (320 km²) feature. The volcanic strata exposed in the eastern part of the caldera are inferred to have been tilted during syneruptive, asymmetric collapse of the caldera floor, whereas those in other parts have been affected by block faulting but not overall tilting. Two ignimbrites (e.g. Long Harbour: 141.4±1.0 Ma) exposed within the caldera outline are now interpreted to have accumulated in local volcano-tectonic basins, confined by faults that were later exploited by dyke intrusions. Field observations offer important constraints on the ages of volcanic and plutonic units, which have been tested by zircon U-Pb dating in this study. The field evidence also negates a previous interpretation that there was an overall tilting of the High Island caldera complex.  U-Pb dating and trace element analyses using secondary-ion mass spectrometry (SIMS) techniques have been carried out on zircons separated from 21 samples, chosen from both volcanic and plutonic samples within the Lantau and High Island Caldera complexes. The SIMS age datasets reveal two groups: (1) seven samples with unimodal age spectra; and (2) fourteen samples yielding multiple age components. Five samples in group 1 yield mean ages indistinguishable from their previously published ID-TIMS ages, demonstrating that the SIMS techniques have generated results fully in agreement with the ID-TIMS methods, although with overall less precision. Of the two other samples, one is slightly younger than the published ID-TIMS age, and the other has no previous age determination. Thirteen samples in group 2 are interpreted to have crystallisation/eruption ages that are younger (although often within 2.s.d. uncertainties) than their corresponding ID-TIMS values. The remaining sample from this group has no previous age determination. The overall age patterns from both groups suggest that, instead of separate phases of activity at ~143 and 141-140 Ma as previously inferred, magmatic and volcanic activities were continuous (within age analytical uncertainties) over a ~5 Myr period. Direct linkages between several plutonic and volcanic units in this period of activity (e.g. High Island Tuff and the Kowloon Granite) are no longer supported by the age data, and magmatic activity represented by exposed plutons continued until 137.8±0.8 Ma, as with the Mount Butler Granite.  Under CL imagery, a wide variety of zircon textures is evident, indicative of complex processes that operated in the magmatic systems. Zircon trace element data coupled with textural characteristics enable identification of some common petrogenetic processes. Overall, the intra-grain (cores-rims, sector-zoned zircons) and intra-sample variations in trace element abundance and elemental ratios are more significant than the differences between individual samples. Zircon chemistries in samples from both the volcanic and plutonic records indicate that there are two groups of volcanic-plutonic products through the history of the High Island Caldera magmatic system. Two evolutionary models are proposed here to explain these two groups. In the first model, the magmatic system comprises a single domain that fluctuated in temperature through varying inputs of hotter melts (and was randomly tapped). In the second model the intrusive and extrusive products represent interplay of two magmatic domains in the crust, with contrasting characteristics.  Zircon and apatite fission track analyses have been carried out on several of the rocks dated by U-Pb methods (either SIMS or TIMS), together with a selection of other Mesozoic igneous rocks and post-magmatic Cretaceous and Eocene sediments to cover the geographic area of Hong Kong. The fission-track dataset and associated thermal modelling show that the igneous rocks and Cretaceous sediments (but not the Eocene sediments) together experienced post-emplacement or post-depositional heating to >250 ºC, subsequently cooling through 120-60 ºC after ~80 Ma. The heating reflects the combined effects of an enhanced geothermal gradient and burial. The enhanced geothermal gradient is interpreted to represent continuing Yanshanian magmatic activity at depth, without any documented surface eruption products, until ~100-80 Ma. The data also indicate a long-term, slow cooling (~1 ºC/Myr) since the early Cenozoic, linked to ~2-3 km of erosion-driven exhumation. The thermo-tectonic history of Hong Kong reflects the mid-Cretaceous transition of southeast China from an active to a passive margin bordered by marginal basins that formed in the early Cenozoic. The inferred cessation of magmatism at depth below Hong Kong at ~100-80 Ma is broadly coincident with the cessation of plutonic activity in many other circum-Pacific magmatic provinces related to reorganisation of Pacific Plate motion.</p>


2021 ◽  
Author(s):  
◽  
Lai Kwan Denise Tang

<p>Hong Kong represents a microcosm of the magmatic and tectonic processes that are related to formation of the Southeast China Magmatic Belt (SCMB, ~1,300 km long by 400 km wide). The SCMB is dominated by extensive Mesozoic (Yanshanian Orogeny) igneous rocks, which form part of an extensive, long-lived circum-Pacific igneous province. In Hong Kong, large silicic ignimbrites, produced from several calderas identified through geological mapping, together with their sub-volcanic plutons record a ~26-Myr period of magmatic activities from ~164 to 138 Ma. This work studies these volcanic-plutonic assemblages with the associated Lantau and High Island caldera complexes, with an emphasis on the ~143-138 Ma period from the latter complex. This study uses multiple techniques, including field studies, zircon geochronology and trace element analyses, and zircon and apatite low-temperature thermochronology, to gain new insights into the Mesozoic tectono-magmatic history in this region.  Field studies demonstrate that the High Island caldera complex (with its main collapse at 140.9±0.4 Ma in association with the High Island Tuff) is structurally more complex than previously suggested and represents a long-lived, large (320 km²) feature. The volcanic strata exposed in the eastern part of the caldera are inferred to have been tilted during syneruptive, asymmetric collapse of the caldera floor, whereas those in other parts have been affected by block faulting but not overall tilting. Two ignimbrites (e.g. Long Harbour: 141.4±1.0 Ma) exposed within the caldera outline are now interpreted to have accumulated in local volcano-tectonic basins, confined by faults that were later exploited by dyke intrusions. Field observations offer important constraints on the ages of volcanic and plutonic units, which have been tested by zircon U-Pb dating in this study. The field evidence also negates a previous interpretation that there was an overall tilting of the High Island caldera complex.  U-Pb dating and trace element analyses using secondary-ion mass spectrometry (SIMS) techniques have been carried out on zircons separated from 21 samples, chosen from both volcanic and plutonic samples within the Lantau and High Island Caldera complexes. The SIMS age datasets reveal two groups: (1) seven samples with unimodal age spectra; and (2) fourteen samples yielding multiple age components. Five samples in group 1 yield mean ages indistinguishable from their previously published ID-TIMS ages, demonstrating that the SIMS techniques have generated results fully in agreement with the ID-TIMS methods, although with overall less precision. Of the two other samples, one is slightly younger than the published ID-TIMS age, and the other has no previous age determination. Thirteen samples in group 2 are interpreted to have crystallisation/eruption ages that are younger (although often within 2.s.d. uncertainties) than their corresponding ID-TIMS values. The remaining sample from this group has no previous age determination. The overall age patterns from both groups suggest that, instead of separate phases of activity at ~143 and 141-140 Ma as previously inferred, magmatic and volcanic activities were continuous (within age analytical uncertainties) over a ~5 Myr period. Direct linkages between several plutonic and volcanic units in this period of activity (e.g. High Island Tuff and the Kowloon Granite) are no longer supported by the age data, and magmatic activity represented by exposed plutons continued until 137.8±0.8 Ma, as with the Mount Butler Granite.  Under CL imagery, a wide variety of zircon textures is evident, indicative of complex processes that operated in the magmatic systems. Zircon trace element data coupled with textural characteristics enable identification of some common petrogenetic processes. Overall, the intra-grain (cores-rims, sector-zoned zircons) and intra-sample variations in trace element abundance and elemental ratios are more significant than the differences between individual samples. Zircon chemistries in samples from both the volcanic and plutonic records indicate that there are two groups of volcanic-plutonic products through the history of the High Island Caldera magmatic system. Two evolutionary models are proposed here to explain these two groups. In the first model, the magmatic system comprises a single domain that fluctuated in temperature through varying inputs of hotter melts (and was randomly tapped). In the second model the intrusive and extrusive products represent interplay of two magmatic domains in the crust, with contrasting characteristics.  Zircon and apatite fission track analyses have been carried out on several of the rocks dated by U-Pb methods (either SIMS or TIMS), together with a selection of other Mesozoic igneous rocks and post-magmatic Cretaceous and Eocene sediments to cover the geographic area of Hong Kong. The fission-track dataset and associated thermal modelling show that the igneous rocks and Cretaceous sediments (but not the Eocene sediments) together experienced post-emplacement or post-depositional heating to >250 ºC, subsequently cooling through 120-60 ºC after ~80 Ma. The heating reflects the combined effects of an enhanced geothermal gradient and burial. The enhanced geothermal gradient is interpreted to represent continuing Yanshanian magmatic activity at depth, without any documented surface eruption products, until ~100-80 Ma. The data also indicate a long-term, slow cooling (~1 ºC/Myr) since the early Cenozoic, linked to ~2-3 km of erosion-driven exhumation. The thermo-tectonic history of Hong Kong reflects the mid-Cretaceous transition of southeast China from an active to a passive margin bordered by marginal basins that formed in the early Cenozoic. The inferred cessation of magmatism at depth below Hong Kong at ~100-80 Ma is broadly coincident with the cessation of plutonic activity in many other circum-Pacific magmatic provinces related to reorganisation of Pacific Plate motion.</p>


1978 ◽  
Vol 15 (2) ◽  
pp. 293-300 ◽  
Author(s):  
Ian R. Pringle

The Burlington Peninsula, east of the Baie Verte Lineament, is underlain by the Eastern Division of the Fleur de Lys Supergroup, a sequence of metasediments and metavolcanic rocks that is intruded by plutonic masses of granitic to granodioritic composition. This sequence has been designated as Cambrian or older and the deformation and metamorphism in the area interpreted as pre-Ordovician. Recently, however, it has been shown that at least part of the succession is post Lower Ordovician and a mid or late Palaeozoic age has been proposed for the major deformation affecting the area.Rb–Sr ages obtained in the present study area are: (a) whole-rock isochrons—Dunamagon Granite, 413 ± 10 Ma; Cape Brulé Porphyry, 393 ± 25 Ma; Cape St. John Group Ignimbrites, 343 ± 15 Ma and 429 ± 50 Ma; Mic Mac Group Ignimbrite, 375 ± 15 Ma; (b) Biotite ages—Dunamagon Granite, 334, 356 and 358 Ma; (c) Mineral isochron—Burlington Granodiorite, 422 ± 40 Ma. Because of extensive trace element migration in at least some of these units, the interpretation of the ages is complex and does not allow a unique history of the area to be determined. However, the ages do support the proposed mid or late Palaeozoic age for the major deformation and indicate that pre-Ordovician orogeny did not prevail on the scale previously envisaged.


2014 ◽  
Vol 43 (2) ◽  
pp. 47-53 ◽  
Author(s):  
Toshio MIYAZAKI ◽  
Shin-ichi YAMASAKI ◽  
Noriyoshi TSUCHIYA ◽  
Satoshi OKUMURA ◽  
Ryoichi YAMADA ◽  
...  

2020 ◽  
Author(s):  
Peng Wang ◽  
Guochun Zhao ◽  
et al.

Table S1: Zircon U-Pb ages of igneous rocks in the Western Kunlun orogenic belt; Table S2: Results of whole-rock major- (wt%) and trace-element (ppm) data from the three intrusions; Table S3: Zircon U-Pb age of the three intrusions; Table S4: Zircon Hf isotope compositions of the three intrusions; Table S5: Whole-rock Sr-Nd-Pb isotope compositions of the three intrusions; Table S6: Representative analyses of feldspar, amphibole, and pyroxene from the Aqiang and Yutian intrusions; Table S7: Bulk partition coefficients used for trace-element modeling in Figure 14; Figure S1: CL images of zircons showing internal textures and ages of 206Pb/238U (Ma).


2019 ◽  
Vol 42 (5) ◽  
pp. 1235-1254
Author(s):  
Jemal Ahmed

Abstract This paper reports the results of trace elements geochemistry from Tigray national state, northwestern Ethiopia. The area is part of the Arabian-Nubian Shield, where the dominant exposure is low-grade metamorphic rocks and has a long history of liver-related diseases. The increase in the number of liver-related disease patients of the area has been an environmental health issue of national concern. The aim of the study is to determine the level of trace element concentrations and distributions in water and stream sediments of the area and identify the possible sources in relation to human health. Water, stream sediment and rocks samples (20 water, 20 stream sediments, and 6 rock samples) were collected in March 2011 and analyzed for major and trace element contents using ICP-MS, ICP-OES, ion Chromatography, and XRF methods. Bromine, aluminum, fluorine, arsenic, and nitrate values exceed the WHO maximum acceptable concentration (MAC) for drinking purpose. Bromine ranges from 0.11 to 1.48 mg/l show higher values in all samples, and fluorine ranges from 0.21 to 16.49 mg/l show higher values in 20% of the samples. Other trace elements are aluminum—30%, arsenic—10%, and nitrate (NO3)—10%, and they are examples of elements which have above MAC for drinking water. Selenium deficiency may be the other problematic element in the area for which its deficiency is associated with liver damage and heart muscle disorder. The concentration of cobalt and chromium exceeded world geochemical background value in average shale at most sample stations indicated that these stations were in potential risk.


2001 ◽  
Vol 7 (S2) ◽  
pp. 254-255
Author(s):  
KT Moore ◽  
DR Veblen ◽  
JM Howe

For over 30 years geologists have been trying to better understand antiphase domains (APD) and boundaries (APB) in pigeonite in hopes of using them as markers for the thermal history of the rocks in which they are found. The ability to know the cooling history of igneous rocks is of great interest to geologists and pigeonite has received special attention on this matter because it has exsolution (precipitation) and antiphase domains (APD), both of which can be used as possible thermal markers. APDs in pigeonite arise because of the C2/c → P21/c transformation that occurs upon cooling. When multiple APDs nucleate, grow, and impinge upon one another, they are either in registry or have a translational discrepancy of ½(a+b). The size of the APDs can be used as a qualitative marker of cooling rates, since slowly cooled pigeonites favor large APDs and rapidly cooled pigeonites favor small APDs.


Sign in / Sign up

Export Citation Format

Share Document