scholarly journals Aspects of the Tectono-magmatic Evolution of Late Mesozoic Silicic Magmatic Systems in Hong Kong

2021 ◽  
Author(s):  
◽  
Lai Kwan Denise Tang

<p>Hong Kong represents a microcosm of the magmatic and tectonic processes that are related to formation of the Southeast China Magmatic Belt (SCMB, ~1,300 km long by 400 km wide). The SCMB is dominated by extensive Mesozoic (Yanshanian Orogeny) igneous rocks, which form part of an extensive, long-lived circum-Pacific igneous province. In Hong Kong, large silicic ignimbrites, produced from several calderas identified through geological mapping, together with their sub-volcanic plutons record a ~26-Myr period of magmatic activities from ~164 to 138 Ma. This work studies these volcanic-plutonic assemblages with the associated Lantau and High Island caldera complexes, with an emphasis on the ~143-138 Ma period from the latter complex. This study uses multiple techniques, including field studies, zircon geochronology and trace element analyses, and zircon and apatite low-temperature thermochronology, to gain new insights into the Mesozoic tectono-magmatic history in this region.  Field studies demonstrate that the High Island caldera complex (with its main collapse at 140.9±0.4 Ma in association with the High Island Tuff) is structurally more complex than previously suggested and represents a long-lived, large (320 km²) feature. The volcanic strata exposed in the eastern part of the caldera are inferred to have been tilted during syneruptive, asymmetric collapse of the caldera floor, whereas those in other parts have been affected by block faulting but not overall tilting. Two ignimbrites (e.g. Long Harbour: 141.4±1.0 Ma) exposed within the caldera outline are now interpreted to have accumulated in local volcano-tectonic basins, confined by faults that were later exploited by dyke intrusions. Field observations offer important constraints on the ages of volcanic and plutonic units, which have been tested by zircon U-Pb dating in this study. The field evidence also negates a previous interpretation that there was an overall tilting of the High Island caldera complex.  U-Pb dating and trace element analyses using secondary-ion mass spectrometry (SIMS) techniques have been carried out on zircons separated from 21 samples, chosen from both volcanic and plutonic samples within the Lantau and High Island Caldera complexes. The SIMS age datasets reveal two groups: (1) seven samples with unimodal age spectra; and (2) fourteen samples yielding multiple age components. Five samples in group 1 yield mean ages indistinguishable from their previously published ID-TIMS ages, demonstrating that the SIMS techniques have generated results fully in agreement with the ID-TIMS methods, although with overall less precision. Of the two other samples, one is slightly younger than the published ID-TIMS age, and the other has no previous age determination. Thirteen samples in group 2 are interpreted to have crystallisation/eruption ages that are younger (although often within 2.s.d. uncertainties) than their corresponding ID-TIMS values. The remaining sample from this group has no previous age determination. The overall age patterns from both groups suggest that, instead of separate phases of activity at ~143 and 141-140 Ma as previously inferred, magmatic and volcanic activities were continuous (within age analytical uncertainties) over a ~5 Myr period. Direct linkages between several plutonic and volcanic units in this period of activity (e.g. High Island Tuff and the Kowloon Granite) are no longer supported by the age data, and magmatic activity represented by exposed plutons continued until 137.8±0.8 Ma, as with the Mount Butler Granite.  Under CL imagery, a wide variety of zircon textures is evident, indicative of complex processes that operated in the magmatic systems. Zircon trace element data coupled with textural characteristics enable identification of some common petrogenetic processes. Overall, the intra-grain (cores-rims, sector-zoned zircons) and intra-sample variations in trace element abundance and elemental ratios are more significant than the differences between individual samples. Zircon chemistries in samples from both the volcanic and plutonic records indicate that there are two groups of volcanic-plutonic products through the history of the High Island Caldera magmatic system. Two evolutionary models are proposed here to explain these two groups. In the first model, the magmatic system comprises a single domain that fluctuated in temperature through varying inputs of hotter melts (and was randomly tapped). In the second model the intrusive and extrusive products represent interplay of two magmatic domains in the crust, with contrasting characteristics.  Zircon and apatite fission track analyses have been carried out on several of the rocks dated by U-Pb methods (either SIMS or TIMS), together with a selection of other Mesozoic igneous rocks and post-magmatic Cretaceous and Eocene sediments to cover the geographic area of Hong Kong. The fission-track dataset and associated thermal modelling show that the igneous rocks and Cretaceous sediments (but not the Eocene sediments) together experienced post-emplacement or post-depositional heating to >250 ºC, subsequently cooling through 120-60 ºC after ~80 Ma. The heating reflects the combined effects of an enhanced geothermal gradient and burial. The enhanced geothermal gradient is interpreted to represent continuing Yanshanian magmatic activity at depth, without any documented surface eruption products, until ~100-80 Ma. The data also indicate a long-term, slow cooling (~1 ºC/Myr) since the early Cenozoic, linked to ~2-3 km of erosion-driven exhumation. The thermo-tectonic history of Hong Kong reflects the mid-Cretaceous transition of southeast China from an active to a passive margin bordered by marginal basins that formed in the early Cenozoic. The inferred cessation of magmatism at depth below Hong Kong at ~100-80 Ma is broadly coincident with the cessation of plutonic activity in many other circum-Pacific magmatic provinces related to reorganisation of Pacific Plate motion.</p>

2021 ◽  
Author(s):  
◽  
Lai Kwan Denise Tang

<p>Hong Kong represents a microcosm of the magmatic and tectonic processes that are related to formation of the Southeast China Magmatic Belt (SCMB, ~1,300 km long by 400 km wide). The SCMB is dominated by extensive Mesozoic (Yanshanian Orogeny) igneous rocks, which form part of an extensive, long-lived circum-Pacific igneous province. In Hong Kong, large silicic ignimbrites, produced from several calderas identified through geological mapping, together with their sub-volcanic plutons record a ~26-Myr period of magmatic activities from ~164 to 138 Ma. This work studies these volcanic-plutonic assemblages with the associated Lantau and High Island caldera complexes, with an emphasis on the ~143-138 Ma period from the latter complex. This study uses multiple techniques, including field studies, zircon geochronology and trace element analyses, and zircon and apatite low-temperature thermochronology, to gain new insights into the Mesozoic tectono-magmatic history in this region.  Field studies demonstrate that the High Island caldera complex (with its main collapse at 140.9±0.4 Ma in association with the High Island Tuff) is structurally more complex than previously suggested and represents a long-lived, large (320 km²) feature. The volcanic strata exposed in the eastern part of the caldera are inferred to have been tilted during syneruptive, asymmetric collapse of the caldera floor, whereas those in other parts have been affected by block faulting but not overall tilting. Two ignimbrites (e.g. Long Harbour: 141.4±1.0 Ma) exposed within the caldera outline are now interpreted to have accumulated in local volcano-tectonic basins, confined by faults that were later exploited by dyke intrusions. Field observations offer important constraints on the ages of volcanic and plutonic units, which have been tested by zircon U-Pb dating in this study. The field evidence also negates a previous interpretation that there was an overall tilting of the High Island caldera complex.  U-Pb dating and trace element analyses using secondary-ion mass spectrometry (SIMS) techniques have been carried out on zircons separated from 21 samples, chosen from both volcanic and plutonic samples within the Lantau and High Island Caldera complexes. The SIMS age datasets reveal two groups: (1) seven samples with unimodal age spectra; and (2) fourteen samples yielding multiple age components. Five samples in group 1 yield mean ages indistinguishable from their previously published ID-TIMS ages, demonstrating that the SIMS techniques have generated results fully in agreement with the ID-TIMS methods, although with overall less precision. Of the two other samples, one is slightly younger than the published ID-TIMS age, and the other has no previous age determination. Thirteen samples in group 2 are interpreted to have crystallisation/eruption ages that are younger (although often within 2.s.d. uncertainties) than their corresponding ID-TIMS values. The remaining sample from this group has no previous age determination. The overall age patterns from both groups suggest that, instead of separate phases of activity at ~143 and 141-140 Ma as previously inferred, magmatic and volcanic activities were continuous (within age analytical uncertainties) over a ~5 Myr period. Direct linkages between several plutonic and volcanic units in this period of activity (e.g. High Island Tuff and the Kowloon Granite) are no longer supported by the age data, and magmatic activity represented by exposed plutons continued until 137.8±0.8 Ma, as with the Mount Butler Granite.  Under CL imagery, a wide variety of zircon textures is evident, indicative of complex processes that operated in the magmatic systems. Zircon trace element data coupled with textural characteristics enable identification of some common petrogenetic processes. Overall, the intra-grain (cores-rims, sector-zoned zircons) and intra-sample variations in trace element abundance and elemental ratios are more significant than the differences between individual samples. Zircon chemistries in samples from both the volcanic and plutonic records indicate that there are two groups of volcanic-plutonic products through the history of the High Island Caldera magmatic system. Two evolutionary models are proposed here to explain these two groups. In the first model, the magmatic system comprises a single domain that fluctuated in temperature through varying inputs of hotter melts (and was randomly tapped). In the second model the intrusive and extrusive products represent interplay of two magmatic domains in the crust, with contrasting characteristics.  Zircon and apatite fission track analyses have been carried out on several of the rocks dated by U-Pb methods (either SIMS or TIMS), together with a selection of other Mesozoic igneous rocks and post-magmatic Cretaceous and Eocene sediments to cover the geographic area of Hong Kong. The fission-track dataset and associated thermal modelling show that the igneous rocks and Cretaceous sediments (but not the Eocene sediments) together experienced post-emplacement or post-depositional heating to >250 ºC, subsequently cooling through 120-60 ºC after ~80 Ma. The heating reflects the combined effects of an enhanced geothermal gradient and burial. The enhanced geothermal gradient is interpreted to represent continuing Yanshanian magmatic activity at depth, without any documented surface eruption products, until ~100-80 Ma. The data also indicate a long-term, slow cooling (~1 ºC/Myr) since the early Cenozoic, linked to ~2-3 km of erosion-driven exhumation. The thermo-tectonic history of Hong Kong reflects the mid-Cretaceous transition of southeast China from an active to a passive margin bordered by marginal basins that formed in the early Cenozoic. The inferred cessation of magmatism at depth below Hong Kong at ~100-80 Ma is broadly coincident with the cessation of plutonic activity in many other circum-Pacific magmatic provinces related to reorganisation of Pacific Plate motion.</p>


1997 ◽  
Vol 34 (10) ◽  
pp. 1366-1378 ◽  
Author(s):  
Paul B. O'Sullivan ◽  
Larry S. Lane

Apatite fission-track data from 16 sedimentary and crystalline rock samples indicate rapid regional Early Eocene denudation within the onshore Beaufort–Mackenzie region of northwestern Canada. Rocks exposed in the area of the Big Fish River, Northwest Territories, cooled rapidly from paleotemperatures of >80–110 °C to <6 0°C at ca. 56 ± 2 Ma, probably in response to kilometre-scale denudation associated with regional structuring. The data suggest the region experienced a geothermal gradient of ~28 °C/km prior to rapid cooling, with ~2.7 km of section having been removed from the top of the exposed section in the Moose Channel Formation and ~3.8 km from the top of the exposed Cuesta Creek Member. Farther to the west, rocks exposed in the headwaters of the Blow River in the Barn Mountains, Yukon Territories, were exposed to paleotemperatures above 110 °C in the Late Paleocene prior to rapid cooling from these elevated paleotemperatures due to kilometre-scale denudation at ca. 56 ± 2 Ma. Exposure of these samples at the surface today requires that a minimum of ~3.8 km of denudation occurred since they began cooling below ~110 °C. The apatite analyses indicate that rocks exposed in the northern Yukon and Northwest Territories experienced rapid cooling during the Early Eocene in response to kilometre-scale denudation, associated with early Tertiary folding and thrusting in the northern Cordillera. Early Eocene cooling–uplift ages for onshore sections are slightly older than the Middle Eocene ages previously documented for the adjacent offshore foldbelt and suggest that the deformation progressed toward the foreland of the foldbelt through time.


2021 ◽  
Author(s):  
Tatyana Bagdasaryan ◽  
Roman Veselovskiy ◽  
Viktor Zaitsev ◽  
Anton Latyshev

&lt;p&gt;The largest continental igneous province, the Siberian Traps, was formed within the Siberian platform at the Paleozoic-Mesozoic boundary, ca. 252 million years ago. Despite the continuous and extensive investigation of the duration and rate of trap magmatism on the Siberian platform, these questions are still debated. Moreover, the post-Paleozoic thermal history of the Siberian platform is almost unknown. This study aims to reconstruct the thermal history of the Siberian platform during the last 250 Myr using the low-temperature thermochronometry. We have studied intrusive complexes from different parts of the Siberian platform, such as the Kotuy dike, the Odikhincha, Magan and Essey ultrabasic alkaline massifs, the Norilsk-1 and Kontayskaya intrusions, and the Padunsky sill. We use apatite fission-track (AFT) thermochronology to assess the time since the rocks were cooled below 110&amp;#8451;. Obtained AFT ages (207-173 Ma) are much younger than available U-Pb and Ar/Ar ages of the traps. This pattern might be interpreted as a long cooling of the studied rocks after their emplacement ca. 250 Ma, but this looks quite unlikely because contradicts to the geological observations. Most likely, the rocks were buried under a thick volcanic-sedimentary cover and then exhumed and cooled below 110&amp;#8451; ca. 207-173 Ma. Considering the increased geothermal gradient up to 50&amp;#8451;/km at that times, we can estimate the thickness of the removed overlying volcanic-sedimentary cover up to 207-173 Ma as about 2-3 km.&lt;/p&gt;&lt;p&gt;The research was carried out with the support of RFBR (grants 20-35-90066, 18-35-20058, 18-05-00590 and 18-05-70094) and the Program of development of Lomonosov Moscow State University.&lt;/p&gt;


1941 ◽  
Vol 78 (1) ◽  
pp. 45-61 ◽  
Author(s):  
W. D. Urry ◽  
Arthur Holmes

The helium method of determining the ages of fine-grained basic igneous rocks has now been so far developed as to be applicable to various geological and petrological problems, particularly where geological periods are involved, as in the problem here discussed. For details of the history of this development up to the beginning of 1937 reference may be made to Holmes, 1931; Urry, 1933; Lane and Urry, 1935; Urry, 1936 (b); Holmes and Paneth, 1936; and Holmes, 1937. During 1937 it was found that many of the helium-ratios on which the ‘helium’ time-scale had been based were too high, because of a previously unsuspected error in radium determination due to reliance having being placed on a radium standard which was seriously at fault. To clear up this embarrassing situation an immediate effort was made by several investigators in collaboration, and the first fruits of their work have recently become available (Evans, Goodman, Keevil, Lane, and Urry, 1939).


1983 ◽  
Vol 115 ◽  
pp. 9-14
Author(s):  
P.R Dawes ◽  
D.C Rex ◽  
N.J Soper

This note documents results of routine K/Ar isotopic age determination of dolerite dykes from the North Greenland fold belt. All the material was collected in 1969 by two of us (P.R.D. and N.J.S.) during the Joint Services Expedition to Peary Land; the isotopic analyses have been undertaken by D.C.R. in the geologicallaboratories of the University of Leeds. In view of the renewed interest in the tectonic and magmatic history of the Peary Land region stemming from the systematic field studies carried out by GGU in 1978-1980 (see GGU Rapport 88, 99 and 106), the results of this early dating programme are listed here as a contribution to this discussion. Recently, some reference has been made in the literature to these hitherto unpublished results (Dawes & Soper, 1979; Higgins et al., 1981; Håkansson & Pedersen, 1982).


1978 ◽  
Vol 15 (2) ◽  
pp. 293-300 ◽  
Author(s):  
Ian R. Pringle

The Burlington Peninsula, east of the Baie Verte Lineament, is underlain by the Eastern Division of the Fleur de Lys Supergroup, a sequence of metasediments and metavolcanic rocks that is intruded by plutonic masses of granitic to granodioritic composition. This sequence has been designated as Cambrian or older and the deformation and metamorphism in the area interpreted as pre-Ordovician. Recently, however, it has been shown that at least part of the succession is post Lower Ordovician and a mid or late Palaeozoic age has been proposed for the major deformation affecting the area.Rb–Sr ages obtained in the present study area are: (a) whole-rock isochrons—Dunamagon Granite, 413 ± 10 Ma; Cape Brulé Porphyry, 393 ± 25 Ma; Cape St. John Group Ignimbrites, 343 ± 15 Ma and 429 ± 50 Ma; Mic Mac Group Ignimbrite, 375 ± 15 Ma; (b) Biotite ages—Dunamagon Granite, 334, 356 and 358 Ma; (c) Mineral isochron—Burlington Granodiorite, 422 ± 40 Ma. Because of extensive trace element migration in at least some of these units, the interpretation of the ages is complex and does not allow a unique history of the area to be determined. However, the ages do support the proposed mid or late Palaeozoic age for the major deformation and indicate that pre-Ordovician orogeny did not prevail on the scale previously envisaged.


2021 ◽  
Vol 62 (4) ◽  
pp. 445-459
Author(s):  
A.N. Berzina ◽  
A.P. Berzina ◽  
V.O. Gimon

Abstract ––Two stages are recognized in the evolution of the Aksug ore-magmatic system (OMS): (1) formation of the Aksug granitoid pluton and (2) emplacement of small ore-bearing intrusions. Intrusive bodies of the two stages are composed of rocks of the same type and bear copper mineralization: poor dispersed and large-scale veinlet-disseminated, respectively. The pluton and small intrusions are formed by gabbroid and granitoid rocks, with similar petrogeochemical characteristics of igneous rocks of the same type. The plutonic gabbroic association includes gabbro, gabbrodiorites, and pyroxene–amphibole diorites/quartz diorites. The small subvolcanic gabbroic intrusions are gabbrodiorite and diorite porphyrites. The trace element patterns of the gabbroids are similar to those of igneous rocks in subduction zones. The gabbroids are characterized by isotope parameters εNd(500) = +6.1 to +7.2 and (87Sr/86Sr)500 = 0.7022–0.7030 and model age TNd(DM) = 0.85–0.74 Ga. As follows from the geochemical parameters, the depleted mantle metasomatized by subduction fluids was the source of basaltic magma. The plutonic granitoid association includes tonalites, plagiogranites, and amphibole diorites/quartz diorites; the small subvolcanic granitoid intrusions are tonalite porphyry and quartz diorite porphyrites. The trace element patterns and Nd and Sr isotope compositions of the granitoids are much similar to those of the gabbroids. According to the geochemical parameters, tonalitic and plagiogranitic magmas formed through the melting of juvenile mafic crust, and dioritic magma resulted from the mixing of basaltic and tonalitic/plagiogranitic magmas. In the course of the OMS formation, metals and volatiles were introduced by basaltic and granitoid magmas from the metasomatized mantle and juvenile mafic crust. The compression setting during the pluton formation hampered the separation of ore-bearing fluids, which led to poor dispersed mineralization. The extension setting during the emplacement of small intrusions favored the intense separation of ore-bearing fluids. The interaction of magma and fluids of the small intrusions with rocks of the pluton was accompanied by the removal of metals from the latter and their involvement in the ore-forming process. This increased the ore potential of the magmatic system and favored the formation of rich mineralization at the final stage of its evolution.


Sign in / Sign up

Export Citation Format

Share Document