Fluctuations in geomagnetic secular variation rate according to data from the global network of magnetic observatories

2016 ◽  
Vol 57 (3) ◽  
pp. 483-497 ◽  
Author(s):  
A.V. Ladynin
1999 ◽  
Vol 42 (2) ◽  
Author(s):  
A. De Santis ◽  
M. Chiappini ◽  
J. M. Torta ◽  
R. R. B. von Frese

The properties of the Earth's core magnetic field and its secular variation are poorly known for the Antarctic. The increasing availability of magnetic observations from airborne and satellite surveys, as well as the existence of several magnetic observatories and repeat stations in this region, offer the promise of greatly improving our understanding of the Antarctic core field. We investigate the possible development of a Laplacian reference model of the core field from these observations using spherical cap harmonic analysis. Possible uses and advantages of this approach relative to the implementations of the standard global reference field are also considered.


2010 ◽  
Vol 52 (5) ◽  
Author(s):  
Giuliana Verbanac ◽  
Monika Korte ◽  
Mioara Mioara Mandea

2021 ◽  
Vol 62 (2) ◽  
pp. 255-262
Author(s):  
D.A. Kuleshov ◽  
P.G. Dyadkov ◽  
V.V. Plotkin

Abstract ––The study focuses on detection of geomagnetic secular variation and the respective correction of tectonomagnetic data. A new technique is proposed for picking the secular variation component in the Earth’s main magnetic field recorded by precise measurements at 100 to 500 km sites on the surface. Long-period field variations presumably arise from fluid motions in the liquid core, at depths of 3000 km, whereas the sizes of observation networks are within 500 km. The sources of secular variation, irrespective of their configuration, are much deeper than those of tectonomagnetic anomalies located above the Curie surface depths of ~10 to 20 km. Therefore, the surfaces that represent the space distribution of secular variation must be smoother than the respective surfaces for tectonomagnetic anomalies. The problem is thus to separate the regional and local signals from the two types of sources located at different depths. The new method is tested using data of yearly geomagnetic measurements at more than 30 repeat stations of a ~120 km long geodynamic network in Gorny Altai spanning the period from 2004 through 2018. The secular variation pattern is reconstructed by quadratic interpolation. The precise data corrected for secular variation of the main field reveal previously hidden tectonomagnetic anomalies up to 12 nT. The 3 nT positive anomaly falls within the zone of surface deformation caused by the Mw = 7.3 Chuya earthquake of 27 September 2003.


2019 ◽  
Vol 127 ◽  
pp. 02026
Author(s):  
Sergey Y. Khomutov

Variations of the Earth’s magnetic field with times of several years or more reflect the processes within the planet and cause great scientific interest. Over the past 100 years the regular observations at magnetic observatories (MOs) and repeat stations are the only experimental basis for studying such variations. In recent decades, satellite measurements have complemented ground-based measurements, thus partially solving the problems of spatially highly heterogeneous global network of magnetic observatories. Absolute observations are made at MOs to get the total field intensity vector. Until now, these measurements are performed manually, they are labor intensity and subject to many factors, that are often poorly controlled and reduce the reliability of the results, especially over long periods of time (years and decades), including (1) systematic errors of used magnetometers; (2) magnetic pollution of the absolute pavilion and its surroundings (at a distance of the first hundred meters); (3) instability of the pillars and remote target required to determine magnetic declination; (4) changes of observers and their weak qualification. Significant methodological problems arise if MO is moved to new location without special activity or infrastructure of MO (pavilions or pillars) is changed without careful control. For long-term stability and reliability of measurements, magnetic observatories were joined in IAGA network and then INTERMAGNET. Within these networks, requirements and standards have been defined, absolute magnetometers are compared every two years and observers are being trained. Modern hardware technologies allow to solve partially problems the automation of absolute observations, the self-calibration of the magnetometers, the checking of the MO’s magnetic environment, etc. Fully automated measurement systems help to expand the MO network.


Sign in / Sign up

Export Citation Format

Share Document